×

On normal and structured matrices under unitary structure-preserving transformations. (English) Zbl 1458.15027

Summary: Structured canonical forms under unitary and suitable structure-preserving similarity transformations for normal and (skew-)Hamiltonian as well as normal and per(skew)-Hermitian matrices are proposed. Moreover, an algorithm for computing those canonical forms is sketched.

MSC:

15A21 Canonical forms, reductions, classification
15A20 Diagonalization, Jordan forms
15B99 Special matrices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Benner, P.; Mehrmann, V.; Xu, H., A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems, Electron. Trans. Numer. Anal., 8, 115-126 (1999) · Zbl 0936.65045
[2] Benner, P.; Penke, C., Efficient and Accurate Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem for Crystalline Systems (2020), Preprint
[3] Bunse-Gerstner, A.; Faßbender, H., A Jacobi-like method for solving algebraic Riccati equations on parallel computers, IEEE Trans. Autom. Control, 42, 8, 1071-1084 (1997) · Zbl 0891.93033
[4] Byers, R., A Hamiltonian-Jacobi algorithm, IEEE Trans. Autom. Control, 35, 5, 566-570 (1990) · Zbl 0706.65066
[5] Goldstine, H. H.; Horwitz, L. P., A procedure for the diagonalization of normal matrices, J. ACM, 6, 176-195 (1959) · Zbl 0090.10002
[6] Golub, G. H.; Van Loan, C. F., Matrix Computations (2012), Johns Hopkins University Press
[7] Henrici, P., On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices, J. Soc. Ind. Appl. Math., 6, 144-162 (1958) · Zbl 0097.32601
[8] Jacobi, C. G.J., Über ein leichtes Verfahren, die in der Theorie der Säkulärstörungen vorkommenden Gleichungen numerisch aufzulösen, J. Reine Angew. Math., 30, 51-95 (1846) · ERAM 030.0852cj
[9] Lin, W.-W.; Mehrmann, V.; Xu, H., Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra Appl., 302-303, 469-533 (1999) · Zbl 0947.15004
[10] Mackey, D. S.; Mackey, N.; Tisseur, F., Structured tools for structured matrices, Electron. J. Linear Algebra, 10, 106-145 (2003) · Zbl 1027.15013
[11] Mehrmann, V., The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, Lecture Notes in Control and Information Sciences, vol. 163 (July 1991), Springer: Springer Heidelberg · Zbl 0746.93001
[12] Paige, C.; Van Dooren, P., On the quadratic convergence of Kogbetliantz’s algorithm for computing the singular value decomposition, Linear Algebra Appl., 77, 301-313 (1986) · Zbl 0621.65031
[13] Paige, C.; Van Loan, C. F., A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl., 41, 11-32 (1981) · Zbl 1115.15316
[14] Saltenberger, P., On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms (2019), Logos Verlag Berlin: Logos Verlag Berlin Berlin, PhD thesis TU Braunschweig (Germany) · Zbl 1414.15002
[15] Stewart, G. W., A Jacobi-like algorithm for computing the Schur decomposition of a nonhermitian matrix, SIAM J. Sci. Stat. Comput., 6, 853-864 (1985) · Zbl 0601.65024
[16] Trench, W. F., Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 377, 207-218 (2004) · Zbl 1046.15028
[17] (visited August 14, 2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.