×

Natural and smoothing quadratic spline. (An elementary approach). (English) Zbl 0731.65006

The authors study the problem of constructing a parabolic spline s on [a,b] with knots \(\{x_ i\}^ n_ 1\), \(a=x_ 0<x_ 1<...<x_{n+1}=b\), satisfying the interpolation conditions (1) \(\int^{x_{i+1}}_{x_ i}s(t)dt=y_ i,\) \(i=0,1,...,n\). They show that the unique solution s (under certain boundary conditions) minimizes the integral \(\int^{b}_{a}[s'(t)]^ 2dt\) over the set of all interpolants from \(W^ 1_ 2[a,b].\)
Reviewer’s remark: Set \(p'(t)=s(t)\), \(p(a)=0\). Then the problem (1) is equivalent to the cubic spline interpolation problem \(p(x_ i)=f_ i,\) \(i=0,1,...,n+1\), with \(f_ 0=0\), \(f_ i:=y_ 0+y_ 1+...+y_{i-1}\), \(i=1,...,n+1\), and many of the results in this paper follow from the known theorems about natural spline interpolation.

MSC:

65D07 Numerical computation using splines
41A15 Spline approximation
65D05 Numerical interpolation
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] J. H. Ahlberg E. N. Nilson J. L. Walsh: The Theory of Splines and Their Applications. Acad. Press, New York 1967 · Zbl 0158.15901
[2] C. de Boor: A Practical Guide to Splines. New York, Springer-Verlag 1978 · Zbl 0406.41003
[3] J. Kobza: An algorithm for biparabolic spline. Aplikace matematiky 32 (1987), 401-413. · Zbl 0635.65006
[4] J. Kobza: Some properties of interpolating quadratic splines. Acta UPO, FRN, Vol. 97 (1990), Math. XXIV, 45-63. · Zbl 0748.41006
[5] P.-J. Laurent: Approximation et optimization. Paris, Hermann 1972
[6] В. Л. Макаров В. В. Хлобыстов: Сплайн-аппроксимация функций. Москва, Высшая школа 1983. · Zbl 1229.47001
[7] I. J. Schoenberg: Splines and histograms. Spline Functions and Approximation Theory (Meir, Sharma -, Basel, Birkhäuser Verlag (1973), 277-327. · Zbl 0274.41004
[8] M. H. Schultz: Spline Analysis. Englewood Cliffs, Prentice-Hall 1973. · Zbl 0333.41009
[9] С. Б. Стечкин Ю. Н. Субботин: Сплайны в вычислительной математике. Москва, Наука 1976. · Zbl 1226.05083
[10] В. А. Василенко: Сплайн-функции. Теория, алгоритмы, программы. Новосибирск, Наука (СО), 1983. · Zbl 1171.53341
[11] В. С. Завьялов Б. И. Квасов В. Л. Мирошниченко: Методы сплайн-функций. Москва, Наука 1980. · Zbl 1229.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.