×

Trotter errors in digital adiabatic quantum simulation of quantum \(\mathbb{Z}_2\) lattice gauge theory. (English) Zbl 1454.81049

Summary: Trotter decomposition is the basis of the digital quantum simulation. Asymmetric and symmetric decompositions are used in our GPU demonstration of the digital adiabatic quantum simulations of \((2+1)\)-dimensional quantum \(\mathbb{Z}_2\) lattice gauge theory. The actual errors in Trotter decompositions are investigated as functions of the coupling parameter and the number of Trotter substeps in each step of the variation of coupling parameter. The relative error of energy is shown to be equal to the Trotter error usually defined in terms of the evolution operators. They are much smaller than the order-of-magnitude estimation. The error in the symmetric decomposition is much smaller than that in the asymmetric decomposition. The features of the Trotter errors obtained here are useful in the experimental implementation of digital quantum simulation and its numerical demonstration.

MSC:

81P68 Quantum computation
81T25 Quantum field theory on lattices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Wegner, F. J., J. Math. Phys.12, 2259 (1971).
[2] Kogut, J. B., Rev. Mod. Phys.51, 659 (1979).
[3] Sachdev, S., Rep. Prog. Phys.82, 014001 (2018).
[4] Kogut, J. and Susskind, L., Phys. Rev. D11, 395 (1975).
[5] Wilson, K. G., Phys. Rev. D10, 2445 (1974).
[6] Ercolessi, E.et al., Phys. Rev. D98, 074503 (2018).
[7] Levin, M. A. and Wen, X. G., Phys. Rev. B71, 045110 (2005).
[8] Wen, X. G., Ann. Phys.316, 1 (2005). · Zbl 1068.81054
[9] Fradkin, E., Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge University Press, 2013). · Zbl 1278.82001
[10] Kitaev, A., Ann. Phys.303, 2 (2003). · Zbl 1012.81006
[11] A. Kitaev and C. Laumann, arXiv:0904.2771.
[12] Fowler, A. G.et al., Phys. Rev. A86 (2012).
[13] Zohar, E.et al., Phys. Rev. Lett.118, 5 (2017).
[14] Bender, J.et al., New J. Phys.20, 093001 (2018).
[15] NuQS Collaboration (Lamm, H., Lawrence, S. and Yamauchi, Y.), Phys. Rev. D100, 034518 (2019).
[16] Schweizer, C.et al., Nat. Phys.15, 1168 (2019).
[17] X. Cui, J. C. Yang and Y. Shi, arXiv:1910.08020.
[18] Trotter, H. F., Proc. Am. Math. Soc.10, 545 (1959). · Zbl 0099.10401
[19] Lloyd, S., Science273, 1073 (1996). · Zbl 1226.81059
[20] Hatano, N. and Suzuki, M., Quantum Annealing and Other Optimization Methods (Springer, Berlin, Heidelberg, 2005), p. 37.
[21] A. M. Childs et al., arXiv:1912.08854.
[22] Shi, Y. and Wu, Y. S., Phys. Rev. A69, 024301 (2004).
[23] Jones, T.et al., Sci. Rep.9, 10736 (2019).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.