×

An adaptive scaled boundary finite element method for contact analysis. (English) Zbl 1479.74119

Summary: In this work, we propose a framework for an adaptive contact analysis in deformable solids using the effective error indicator from the scaled boundary finite element method (SBFEM) with a quadtree decomposition. Further, the SBFEM is implemented with the commercial finite element software, Abaqus, to perform the contact analysis by employing the user element subroutine (UEL) feature. The SBFEM error indicator coupled with the quadtree decomposition is implemented in Matlab and allowed to interact with the Abaqus using .inp file for an adaptive refinement. The detailed implementation of the framework, input data format, and the UEL subroutine which is one of the key features of the proposed work are clearly explained. The effectiveness of the proposed framework is demonstrated by solving several contact problems of engineering significance. The developed SBFEM code can be downloaded from https://github.com/nsundar/sbfem.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[2] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: Basic analysis and examples, J. Numer. Math., 4, 237-264 (1996) · Zbl 0868.65076
[3] Bordas, S.; Duflot, M., Derivative recovery and a posteriori error estimate for extended finite elements, Comput. Methods Appl. Mech. Engrg., 196, 3381-3399 (2007) · Zbl 1173.74401
[4] Buscaglia, G. C.; Durán, R.; Fancello, E. A.; Feijóo, R. A.; Padra, C., An adaptive finite element approach for frictionless contact problems, Internat. J. Numer. Methods Engrg., 50, 395-418 (2001) · Zbl 1006.74084
[5] Chan, S. K.; Tuba, I. S., A finite element method for contact problems of solid bodies-Part I. Theory and validation, Int. J. Mech. Sci., 13, 615-625 (1971) · Zbl 0226.73052
[6] Chaudhary, A. B.; Bathe, K.-J., A solution method for static and dynamic analysis of three-dimensional contact problems with friction, Comput. Struct., 24, 855-873 (1986) · Zbl 0604.73116
[7] Chiong, I.; Ooi, E. T.; Song, C.; Tin-Loi, F., Scaled boundary polygons with application to fracture analysis of functionally graded materials, Internat. J. Numer. Methods Engrg., 98, 562-589 (2014) · Zbl 1352.74020
[8] Deeks, A. J.; Wolf, J. P., A virtual work derivation of the scaled boundary finite-element method for elastostatics, Comput. Mech., 28, 489-504 (2002) · Zbl 1076.74552
[9] Deeks, A. J.; Wolf, J. P., Stress recovery and error estimation for the scaled boundary finite-element method, Internat. J. Numer. Methods Engrg., 54, 557-583 (2002) · Zbl 1098.74726
[10] Egger, A.; Pillai, U.; Agathos, K.; Kakouris, E.; Chatzi, E.; Aschroft, I. A.; Triantafyllou, S. P., Discrete and phase field methods for linear elastic fracture mechanics: A comparative study and state-of-the-art review, Appl. Sci., 9, 2436 (2019)
[11] Elabbast, N.; Hong, J.-W.; Bathe, K.-J., On the reliable solution of contact problems in engineering design, Int. J. Mech. Mater., 1, 3-16 (2004)
[12] Garg, N.; Chakladar, N. D.; Gangadhara Prusty, B.; Song, C.; Phillips, A. W., Modelling of laminated composite plates with weakly bonded interfaces using scaled boundary finite element method, Int. J. Mech. Sci., 170, Article 105349 pp. (2020)
[13] Ghaednia, H.; Wang, X.; Saha, S.; Xu, Y.; Sharma, A.; Jackson, R. L., A review of elastic-plastic contact mechanics, Appl. Mech. Rev., 69 (2018), 1-30
[14] González-Estrada, O. A.; Ródenas, J. J.; Bordas, S. P.A.; Nadal, E.; Kerfriden, P.; Fuenmayor, F. J., Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method, Comput. Struct., 152, 1-10 (2015)
[15] Greaves, D. M.; Borthwick, A. G.L., Hierarchical tree-based finite element mesh generation, Internat. J. Numer. Methods Engrg., 45, 447-471 (1999) · Zbl 0947.76050
[16] Gupta, A. K., A finite element for transition from a fine to a coarse grid, Internat. J. Numer. Methods Engrg., 12, 35-45 (1978) · Zbl 0369.73073
[17] Hirshikesh, A. K.; Jansari, C.; Kannan, K.; Annabattula, R. K.; Natarajan, S., Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition, Eng. Fract. Mech., 220, Article 106599 pp. (2019)
[18] Hirshikesh, A. K.; Pramod, A. L.N.; Annabattula, R. K.; Ooi, E. T.; Song, C.; Natarajan, S., Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 355, 284-307 (2019) · Zbl 1441.74206
[19] Hoang, V.-N.; Nguyen, H. B.; Nguyen-Xuan, H., Explicit topology optimization of nearly incompressible materials using polytopal composite elements, Adv. Eng. Softw., 149, Article 102903 pp. (2020)
[20] Huynh, H. D.; Zhuang, X.; Nguyen-Xuan, H., A polytree-based adaptive scheme for modeling linear fracture mechanics using a coupled XFEM-SBFEM approach, Eng. Anal. Bound. Elem., 115, 72-85 (2020) · Zbl 1464.74181
[21] Kanto, Y.; Yagawa, G., A dynamic contact buckling analysis by the penalty finite element method, Internat. J. Numer. Methods Engrg., 29, 755-774 (1990) · Zbl 0713.73092
[22] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer: Springer Berlin · Zbl 0996.74003
[23] Li, Y.; Liu, G. R.; Zhang, G. Y., An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements, Finite Elem. Anal. Des., 47, 256-275 (2011)
[24] Li, Y.; Zhang, G. Y.; Liu, G. R.; Huang, Y. N.; Zong, Z., A contact analysis approach based on linear complementarity formulation using smoothed finite element methods, Eng. Anal. Bound. Elem., 37, 1244-1258 (2013) · Zbl 1287.74028
[25] Liu, L.; Zhang, J.; Song, C.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domaina by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581 (2019)
[26] Liu, L.; Zhang, J.; Song, C.; He, K.; Saputra, A. A.; Gao, W., Automatic scaled boundary finite element method for three-dimensional elastoplastic analysis, Int. J. Mech. Sci., 171, Article 105374 pp. (2020)
[27] Lo, S. H.; Wan, K. H.; Sze, K. Y., Adaptive refinement analysis using hybrid-stress transition elements, Comput. Struct., 84, 2212-2230 (2006)
[28] Nguyen-Thoi, T.; Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Tran, C., Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Int. J. Numer. Methods Biomed. Eng., 27, 198-218 (2011) · Zbl 1370.74144
[29] Nguyen-Xuan, H.; Chau, K. N.; Chau, K. N., Polytopal composite finite elements, Comput. Methods Appl. Mech. Engrg., 355, 405-437 (2019) · Zbl 1441.65109
[30] Ooi, E. T.; Man, H.; Natarajan, S.; Song, C., Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling, Eng. Fract. Mech., 144, 101-117 (2015)
[31] Oysu, C., Finite element and boundary element contact stress analysis with remeshing technique, Appl. Math. Model., 31, 2744-2753 (2007) · Zbl 1225.74101
[32] Papazafeiropoulos, G.; Mun̄iz-Calvente, M.; Martínez-Pañeda, E., Abaqus2Matlab: A suitable tool for finite element post-processing, Adv. Eng. Softw., 105, 9-16 (2017)
[33] Rachowicz, W.; Oden, J. T.; Demkowicz, L., Toward a universal h-p adaptive finite element strategy part 3. Design of h-p meshes, Comput. Methods Appl. Mech. Engrg., 77, 181-212 (1989) · Zbl 0723.73076
[34] Rieger, A.; Wriggers, P., Adaptive methods for frictionless contact problems, Comput. Struct., 79, 2197-2208 (2001)
[35] Rieger, A.; Wriggers, P., Adaptive methods for thermomechanicalcoupled contact problems, Internat. J. Numer. Methods Engrg., 59, 871-894 (2004) · Zbl 1060.74637
[36] Rüter, M.; Gerasimov, T.; Stein, E., Goal-oriented explicit residual-type error estimates in XFEM, Comput. Mech., 52, 361-376 (2013) · Zbl 1398.74397
[37] Sachdeva, T. D.; Ramakrishnan, C. V., A finite element solution for the two-dimensional elastic contact problems with friction, Internat. J. Numer. Methods Engrg., 17, 1257-1271 (1981) · Zbl 0461.73064
[38] Simo, J. C.; Taylor, R. L., An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 97-116 (1992) · Zbl 0755.73085
[39] Simo, J. C.; Wriggers, P.; Taylor, R. L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 163-180 (1985) · Zbl 0552.73097
[40] Smith, M., ABAQUS/Standard User’s Manual, Version 6.9 (2009), Dassault Systèmes Simulia Corp: Dassault Systèmes Simulia Corp United States
[41] Song, C., A super-element for crack analysis in the time domain, Internat. J. Numer. Methods Engrg., 61, 1332-1357 (2004) · Zbl 1075.74679
[42] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), Wiley publications
[43] Song, C.; Ooi, E. T.; Pramod, A. L.N.; Natarajan, S., A novel error indicator and an adaptive refinement technique using the scaled boundary finite element method, Eng. Anal. Bound. Elem., 94, 10-24 (2018) · Zbl 1403.74230
[44] Song, C.; Wolf, J. P., Consistent infinitesimal finite-element cell method: Three-dimensional vector wave equation, Internat. J. Numer. Methods Engrg., 39, 2189-2208 (1996) · Zbl 0885.73089
[45] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 329-355 (1997) · Zbl 0897.73069
[46] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 2045-2066 (2004) · Zbl 1073.65563
[47] Tin-Loi, F.; Xia, S. H., An iterative complementarity approach for elastoplastic analysis involving frictional contact, Int. J. Mech. Sci., 45, 197-216 (2003) · Zbl 1032.74686
[48] Voros, J., Simple path-planning algorithm for mobile robots using quadtrees, IFAC Proc. Vol., 28, 175-180 (1995)
[49] Wenyuan, W.; Wenbin, Y.; Li, R.; Ying, J., A scaled boundary finite element method for bending analysis of fiber-reinforced piezoelectric laminated composite plates, Int. J. Mech. Sci., 161, Article 105011 pp. (2019)
[50] Wriggers, P., Adaptive methods for contact problems, (Stein, Erwin, Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics (2005), Springer Vienna: Springer Vienna Vienna), 321-363 · Zbl 1298.74240
[51] Wriggers, P., Computational Contact Mechanics (2006), Springer: Springer Berlin · Zbl 1104.74002
[52] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 1039-1050 (2016) · Zbl 1398.74420
[53] Xing, W.; Song, C.; Tin-Loi, F., A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems, Comput. Methods Appl. Mech. Engrg., 333, 114-146 (2018) · Zbl 1440.74241
[54] Xing, W.; Zhang, J.; Song, C.; Tin-Loi, F., A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 347, 928-956 (2019) · Zbl 1440.74251
[55] Yang, Z. J.; Yao, F.; Ooi, E. T.; Chen, X. W., A scaled boundary finite element formulation for dynamic elastoplastic analysis, Internat. J. Numer. Methods Engrg., 120, 517-536 (2019)
[56] Yue, J.; Liu, G.-R.; Li, M.; Niu, R., A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation, Int. J. Solids Struct., 141-142, 110-126 (2018)
[57] Zboinski, G., Numerical research on 3D contact problems of turbomachinery blade attachements in the elastic range, Int. J. Mech. Sci., 35, 141-165 (1993)
[58] Zhang, J.; Song, C., A polytree based coupling method for non-matching meshes in 3D, Comput. Methods Appl. Mech. Engrg., 349, 743-773 (2019) · Zbl 1441.74292
[59] Zhang, Y. F.; Yue, J. H.; Li, M.; Niu, R. P., Contact analysis of functionally graded materials using smoothed finite element methods, Int. J. Comput. Methods, 17, Article 1940012 pp. (2020) · Zbl 07205454
[60] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.