×

Characterization of Besov spaces associated with parabolic sections. (English) Zbl 1469.46029

The authors prove some topological properties of Besov spaces associated with a family of parabolic sections described by monotonic increasing functions. Such functional structure is known to be closely related to the study of the parabolic Monge-Ampère equation. The main results are contained in Theorems 1.5, 1.8 and 1.11. At first the authors prove a duality pairing between Besov spaces by using an approximation of the identity. Then, some duality results for Besov spaces are proved using only the doubling property. The third main result of this paper concerns a continuous embedding between Besov spaces which they prove coupling the doubling property with a lower bound condition.
Given these Besov spaces associated with the introduced family of parabolic sections, many problems and challenges can be raised such as the regularity of solutions to the parabolic Monge-Ampère equation with initial data in Besov spaces. I think that this paper will be of great interest.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35K96 Parabolic Monge-Ampère equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aimar, H.; Forzani, L.; Toledano, R., Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampère equation, J. Fourier Anal. Appl., 4, 377-381 (1998) · Zbl 0920.35049
[2] Caffarelli, L. A.; Gutiérrez, C. E., Real analysis related to the Monge-Ampère equation, Trans. Am. Math. Soc., 348, 1075-1092 (1996) · Zbl 0858.35034
[3] Caffarelli, L. A.; Gutiérrez, C. E., Properties of the solutions of the linearized Monge-Ampère equation, Am. J. Math., 119, 423-465 (1997) · Zbl 0878.35039
[4] Chavel, I., Riemannian Geometry: A Modern Introduction (1993), Cambridge University Press · Zbl 0810.53001
[5] Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., 83, 569-645 (1977) · Zbl 0358.30023
[6] Coulhon, T.; Kerkyacharian, G.; Petrushev, P., Heat kernel generated frames in the setting of Dirichlet spaces, J. Fourier Anal. Appl., 18, 995-1066 (2012) · Zbl 1270.58015
[7] David, G.; Journé, J.-L.; Semmes, S., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam., 1, 1-56 (1985) · Zbl 0604.42014
[8] Daskalopoulos, P.; Savin, O., \( C^{1 , \alpha}\) regularity of solutions to parabolic Monge-Ampère equations, Am. J. Math., 4, 1051-1087 (2012) · Zbl 1258.35133
[9] Gutiérrez, C. E.; Huang, Q., \( W^{2 , p}\) estimates for the parabolic Monge-Ampère equation, Arch. Ration. Mech. Anal., 159, 137-177 (2001) · Zbl 0992.35020
[10] Hajlasz, P.; Koskela, P.; Tuominen, H., Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254, 1217-1234 (2008) · Zbl 1136.46029
[11] Han, Y., The embedding theorem for the Besov and Trieble-Lizorkin spaces on spaces of homogeneous type, Proc. Am. Math. Soc., 123, 2181-2189 (1995) · Zbl 0830.42012
[12] Han, Y., Inhomogeneous Calderón reproducing formula on spaces of homogeneous type, J. Geom. Anal., 7, 259-284 (1997) · Zbl 0915.42010
[13] Han, Y.; Han, Y.; Li, J.; He, Z.; Pereyra, C., Geometric characterization of embedding theorems: for Sobolev, Besov, and Triebel-Lizorkin spaces on spaces of homogeneous type-via orthonormal wavelets, J. Geom. Anal. (2020), in press. Available at
[14] Han, Y.; Lu, S.; Yang, D., Inhomogeneous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type, Approx. Theory Appl. (N.S.), 15, 3, 37-65 (1999) · Zbl 0957.46025
[15] Han, Y.; Müller, D.; Yang, D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal., 2008, Article 893409 pp. (2008) · Zbl 1193.46018
[16] Han, Y.; Sawyer, E. T., Littlewood-Paley theorem on space of homogeneous type and the classical function spaces, Mem. Am. Math. Soc., 110, 530, 1-126 (1994) · Zbl 0806.42013
[17] Huang, Q., Harnack inequality for the linearized parabolic Monge-Ampère equation, Trans. Am. Math. Soc., 351, 2025-2054 (1999) · Zbl 0915.35046
[18] Krylov, N. V., Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sib. Mat. Zh.. Sib. Mat. Zh., Sib. Math. J., 17, 226-236 (1976), (in Russian), English translation in: · Zbl 0362.35038
[19] Lee, M.-Y.; Lin, C.-C.; Wu, X.-F., Characterization of Campanato spaces associated with parabolic sections, Asian J. Math., 20, 183-198 (2016) · Zbl 1335.42023
[20] Macías, R. A.; Segovia, C., Lipschitz functions on spaces of homogeneous type, Adv. Math., 33, 257-270 (1979) · Zbl 0431.46018
[21] Nazarov, A. I.; Ural’tseva, N. N., Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 147, 95-109 (1985) · Zbl 0596.35008
[22] Saloff-Coste, L., Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Note Series, vol. 289 (2002) · Zbl 0991.35002
[23] Tang, L., Regularity results on the parabolic Monge-Ampère equation with VMO type data, J. Differ. Equ., 255, 1646-1656 (2013) · Zbl 1284.35246
[24] Triebel, H., Theory of Function Spaces (1983), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0546.46028
[25] Tso, K., Deforming a hypersurface by its Gauss-Kronecker curvature, Commun. Pure Appl. Math., 38, 867-882 (1985) · Zbl 0612.53005
[26] Tso, K., On an Aleksandrov-Bakel’man type maximum principle for second-order parabolic equations, Commun. Partial Differ. Equ., 10, 543-553 (1985) · Zbl 0581.35027
[27] Wang, R.; Wang, G., On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8, 417-446 (1992) · Zbl 0783.35028
[28] Wang, R.; Wang, G., The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Differ. Equ., 6, 237-254 (1993) · Zbl 0811.35053
[29] Yosida, K., Functional Analysis (1980), Spring-Verlag: Spring-Verlag Berlin-New York · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.