×

zbMATH — the first resource for mathematics

Theorème de De Rham pour les variétés stratifiées. (The De Rham theorem for stratified manifolds). (French) Zbl 0733.57010
See the preview in Zbl 0702.57003.

MSC:
57N80 Stratifications in topological manifolds
55N33 Intersection homology and cohomology in algebraic topology
58A12 de Rham theory in global analysis
58A10 Differential forms in global analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Borel et al.: Intersection homology. Progress in Mathematics 50, Birkh?user, Boston, 1984. · Zbl 0553.14002
[2] R. Bott et L. Tu: Differential forms in Algebraic Topology. GTM n?82 Springer-Verlag (1982). · Zbl 0496.55001
[3] J. P. Brasselet: Homologie d’intersection: d?finitions singuli?re et simpliciale. Ecole Polytechnique, Journ?es singuli?res 84-85.
[4] J. P. Brasselet: Homologie d’intersection et cohomologie L 2. Ecole Polytechnique, Journ?es singuli?res 86-87.
[5] J. L. Brylinski: Equivariant intersection cohomology. Pr?publication de l’IHES, Juin 1986.
[6] J. Cheeger: On the Hodge theory of Riemannian pseudomanifolds. Proc. Sympos. Pure Math. 36, Amer. Math. Soc. (1980), 91-146. · Zbl 0461.58002
[7] J. Cheeger, M. Goresky, R. MacPherson: L 2-cohomology and intersection homology of singular algebraic varieties. Sem. on Diff. Geo., Ann. of Math. Stud. 102, Princeton University Press, Princeton, New Jersey (1982), 302-340.
[8] R. Godement: Th?orie des faisceaux. Hermann, Paris (1973). · Zbl 0275.55010
[9] M. Goresky: Triangulation of stratified objects. Proc. Amer. Math. Soc. 72 (1978), 193-200. · Zbl 0392.57001 · doi:10.1090/S0002-9939-1978-0500991-2
[10] M. Goresky, R. MacPherson: Intersection homology theory. Topology 19: (1980), 135-162. · Zbl 0448.55004 · doi:10.1016/0040-9383(80)90003-8
[11] M. Goresky, R. MacPherson: Intersection homology II. Invent. Math. 71 (1983), 77-129. · Zbl 0529.55007 · doi:10.1007/BF01389130
[12] H. King: Topological invariance of intersection homology without sheaves. Topology Appl. 20 (1985), 149-160. · Zbl 0568.55003 · doi:10.1016/0166-8641(85)90075-6
[13] F. Kirwan: An introduction to intersection homology theory. Pitman Research Notes in Math. Ser. 187 (1988). · Zbl 0656.55002
[14] J. Mather: Notes on topological stability (chap. I). Harvard University, 1970. · Zbl 0207.54303
[15] M. Saralegi: Un th?or?me de dualit? entre l’homologie d’intersection et la cohomologie L 2. Th?se, Lille 1988.
[16] M. Saralegi, G. Hector: Formes diff?rentielles d’intersection des pr?stratifications abstraites. C.R. Acad. Sci. Paris 308 (1989), 25-28. · Zbl 0667.55001
[17] R. Thom: Ensembles et morphismes stratifi?s. Bull. Amer. Math. Soc. 75 (1989), 240-284. · Zbl 0197.20502 · doi:10.1090/S0002-9904-1969-12138-5
[18] A. Verona: Le th?or?me de De Rham pour les pr?stratifications abstraites. C. R. Acad. Sci. Paris 273 (1971), 886-889. · Zbl 0222.57027
[19] A. Verona: Stratified mappings ? Structure and Triangulability. Lecture Notes in Math. 1102, Springer Verlag 1984. · Zbl 0543.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.