×

zbMATH — the first resource for mathematics

Exponential decay of the heat kernel over the diagonal. II. (Décroissance exponentielle du noyau de la chaleur sur la diagonale. II.) (French) Zbl 0734.60027
[For part I see the preceding review, Zbl 0734.60026.]
We give some conditions for the heat kernel to have an asymptotic expansion in small time such that all coefficients vanish, although the phenomenon seems difficult to understand by large deviations theory. The fact that the leading term is not zero is strongly related to Bismut’s condition. These examples are related to the Varadhan estimates of the density of a dynamical system submitted to small random perturbations. To understand that type of asymptotic, one must modify the definition of the distance by adding the Bismut condition (unnoticed, but hidden, in classical cases).
Reviewer: G.Ben Arous

MSC:
60F10 Large deviations
60J60 Diffusion processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [Az1] Azencott, R.: Grandes d?viations et applications. Cours de probabilit?s de Saint-Flour. (Lect. Notes Math., vol. 774). Berlin Heidelberg New York: 1978
[2] [Az2] Azencott, R., Baldi, P., Bellaiche, A., et Bellaiche, C., Bougerol, P., Chaleyat-Maurel, M., Elie, L., Granara, J.: G?od?siques et diffusions en temps petit. Soci?t? math?matique de France. Ast?risque84-85, p 3-279 (1981)
[3] [B1] Bismut J.M.: Large deviations and the Malliavin-Calculus. Progress in Math., vol. 45. Basel Boston Stuttgart: Birkh?user 1984 · Zbl 0537.35003
[4] [B2] Bismut, J.M.: M?canique al?atoire. (Lect. Notes Math., vol. 866) Berlin Heidelberg New York: Springer 1981
[5] [B.A1] Ben-Arous, G.: M?thodes de laplace et de la phase stationnaire sur l’espace de Wiener. (Preprint)
[6] [B.A2] Ben-Arous, G.: Noyau de la chaleur hypoelliptique et g?om?trie sous-riemannienne. In: M?tivier, M., Watanabe, S. (?d.) Stochastic analysis (Lect. Notes Math., vol. 1322 pp. 1-17), Berlin Heidelberg New York: Springer 1989
[7] [B.A-L] Ben-Arous, G., L?andre, R.; D?croissance exponentielle du noyau de la chaleur sur la diagonale (I). (A para?tre au Z.W.)
[8] [F.E] Fernique, X.: Int?grabilit? des vecteurs gaussiens. C.R. Acad. Sci., S?r. A270, 1698-1699 (1970) · Zbl 0206.19002
[9] [F.V] Freidlin, M.I., Ventcel, A.D.: Random perturbation of dynamical system. Grundlehren der mathematischen Wissenschaften vol. 2. Berlin Heidelberg New York: Springer 1984
[10] [I.W] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North-Holland 1981 · Zbl 0495.60005
[11] [J.S] Jerison, D., Sanchez, A.: Subelliptic second order differential operator. In: Berenstein, E., ed. complex analysis III. (Lect. Notes Math., vol. 1227, pp. 46-78). Berlin Heidelberg New York: Springer 1987
[12] [K] Kree, P.: La th?orie des distributions en dimension quelconque et l’int?gration stochastique. Stochastic analysis and related topics. In: Korezlioglu, H., Ustunel, S. (?d.) (Lect. Notes Math., vol. 1316, pp. 170-234). Berlin Heidelberg New York: Springer 1989
[13] [K.S1] Kusuoka, S., Stroock, D.W.: Applications of the Malliavin Calculus. Part I. In: It?, K. (?d.) Stochastic analysis. Taniguchi symposium. pp. 271-306 Tokyo: Kinokuniya 1981
[14] [K.S2] Kusuoka, S., Stroock, D.W.: Applications of the Malliavin Calculus. Part II. J. Fac. Sci. Univ. Tokyo, Sect. IA32, 1-76 (1985) · Zbl 0568.60059
[15] [L1] L?andre, R.: Applications quantitatives et g?om?trique du calcul de Malliavin. In: M?tivier, M., Watanabe, S., (?d.) Stochastic analysis. (Lect. Notes Math., vol. 1322, pp. 109-134). Berlin Heidelberg New York: Springer 1989
[16] [L2] L?andre, R.: Int?gration dans la fibre associ?e ? une diffusion d?g?n?r?e. Probab. Th?ory Relat. Fields76, 341-358 (1987) · Zbl 0611.60051
[17] [L3] L?andre, R.: D?veloppement asymptotique de la densit? d’une diffusion d?g?n?r?e. (A para?tre dans Forum mahtematicum)
[18] [L4] L?andre, R.: Estimation en temps petit de la densit? d’une diffusion hypoelliptique. C.R. Acad. Sci. Paris S?r. I.17, 801-804 (1985) · Zbl 0585.60075
[19] [L.R] L?andre, R., Russo, F.: Estimation de Varadhan pour des diffusions ? deux param?tres. Probab. Th?ory Relat. Fields84, 429-451 (1990) · Zbl 0665.60057
[20] [S.V] Stroock, D.W., Varadhan S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. Sixth Berkeley Symposium, pp. 333-368
[21] [W] Watanabe, S.: Analysis of Wiener functionals (Malliavin Calculus) and its applications to heat kernels. Ann. Probab.15, 1-39 (1987) · Zbl 0633.60077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.