×

The arithmetic optimization algorithm. (English) Zbl 07340412

Summary: This work proposes a new meta-heuristic method called Arithmetic Optimization Algorithm (AOA) that utilizes the distribution behavior of the main arithmetic operators in mathematics including (Multiplication \((M)\), Division \((D)\), Subtraction \((S)\), and Addition \((A))\). AOA is mathematically modeled and implemented to perform the optimization processes in a wide range of search spaces. The performance of AOA is checked on twenty-nine benchmark functions and several real-world engineering design problems to showcase its applicability. The analysis of performance, convergence behaviors, and the computational complexity of the proposed AOA have been evaluated by different scenarios. Experimental results show that the AOA provides very promising results in solving challenging optimization problems compared with eleven other well-known optimization algorithms. Source codes of AOA are publicly available at and .

MSC:

68-XX Computer science
65-XX Numerical analysis

Software:

GSA; SSA; GWO; CMA-ES; ALO; Krill herd; WOA; AOA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kumar, V.; Chhabra, J. K.; Kumar, D., Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J. Comput. Sci., 5, 2, 144-155 (2014)
[2] Chao, W.; Jin Ming Koh, Y.; Neng, G. X.; Kang, H. C., Material and shape optimization of bi-directional functionally graded plates by giga and an improved multi-objective particle swarm optimization algorithm, Comput. Methods Appl. Mech. Engrg., 366 (2020) · Zbl 1442.74161
[3] Zhang, J.; Xiao, M.; Gao, L.; Pan, Q., Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Appl. Math. Model., 63, 464-490 (2018) · Zbl 1480.90257
[4] Zhao, W.; Du, C.; Jiang, S., An adaptive multiscale approach for identifying multiple flaws based on xfem and a discrete artificial fish swarm algorithm, Comput. Methods Appl. Mech. Engrg., 339, 341-357 (2018) · Zbl 1440.90095
[5] Abualigah, L., Multi-verse optimizer algorithm: A comprehensive survey of its results, variants and applications, Neural Comput. Appl., 1-26 (2020)
[6] de Melo, V. V.; Banzhaf, W., Drone squadron optimization: a novel self-adaptive algorithm for global numerical optimization, Neural Comput. Appl., 30, 10, 3117-3144 (2018)
[7] Abualigah, L.; Diabat, A., A comprehensive survey of the grasshopper optimization algorithm: results, variants, and applications, Neural Comput. Appl., 1-24 (2020)
[8] Abualigah, L.; Diabat, A.; Geem, Z. W., A comprehensive survey of the harmony search algorithm in clustering applications, Appl. Sci., 10, 11, 3827 (2020)
[9] Abualigah, L., Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications, Neural Comput. Appl., 1-24 (2020)
[10] Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S., Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191, Article 105190 pp. (2020)
[11] Sadollah, A.; Sayyaadi, H.; Lee, H. M.; Kim, J. H., Mine blast harmony search: a new hybrid optimization method for improving exploration and exploitation capabilities, Appl. Soft Comput., 68, 548-564 (2018)
[12] Gholizadeh, S.; Danesh, M.; Gheyratmand, C., A new newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames, Comput. Struct., 234, Article 106250 pp. (2020)
[13] Kallioras, N. A.; Lagaros, N. D.; Avtzis, D. N., Pity beetle algorithm-a new metaheuristic inspired by the behavior of bark beetles, Adv. Eng. Softw., 121, 147-166 (2018)
[14] Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H., Salp swarm algorithm: a comprehensive survey, Neural Comput. Appl., 1-21 (2019)
[15] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution. · Zbl 0148.40701
[16] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[17] Hansen, N.; Müller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es), Evol. Comput., 11, 1, 1-18 (2003)
[18] Gandomi, A. H.; Alavi, A. H., Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 4831-4845 (2012) · Zbl 1266.65092
[19] Abualigah, L.; Shehab, M.; Alshinwan, M.; Mirjalili, S.; Abd Elaziz, M., Ant lion optimizer: A comprehensive survey of its variants and applications, Arch. Comput. Methods Eng. (2020)
[20] Mirjalili, S.; Gandomi, A. H.; Mirjalili, S. Z.; Saremi, S.; Faris, H.; Mirjalili, S. M., Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163-191 (2017)
[21] Cheng, M.-Y.; Prayogo, D., Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput. Struct., 139, 98-112 (2014)
[22] Mirjalili, S., Sca: a sine cosine algorithm for solving optimization problems, Knowl.-based Syst., 96, 120-133 (2016)
[23] Kaveh, A.; Farhoudi, N., A new optimization method: Dolphin echolocation, Adv. Eng. Softw., 59, 53-70 (2013)
[24] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[25] Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S., Gsa: a gravitational search algorithm, Inf. Sci., 179, 13, 2232-2248 (2009) · Zbl 1177.90378
[26] Mirjalili, S.; Mirjalili, S. M.; Hatamlou, A., Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 2, 495-513 (2016)
[27] Kaveh, A.; Talatahari, S., A novel heuristic optimization method: charged system search, Acta Mech., 213, 3-4, 267-289 (2010) · Zbl 1397.65094
[28] Atashpaz-Gargari, E.; Lucas, C., Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, (2007 IEEE Congress on Evolutionary Computation (2007), Ieee), 4661-4667
[29] Rao, R. V.; Savsani, V. J.; Vakharia, D., Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 3, 303-315 (2011)
[30] Wolpert, D. H.; Macready, W. G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 1, 67-82 (1997)
[31] Habib, M. K.; Cherri, A. K., Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division, Opt. Laser Technol., 30, 8, 515-525 (1998)
[32] Bonabeau, E.; Dorigo, M.; Marco, D.d. R.D. F.; Theraulaz, G.; Théraulaz, G., Swarm Intelligence: from Natural to Artificial Systems, Vol. 1 (1999), Oxford university press · Zbl 1003.68123
[33] Eberhart, R.; Kennedy, J., Particle swarm optimization, (Proceedings of the IEEE International Conference on Neural Networks, Vol. 4 (1995), Citeseer), 1942-1948
[34] Simon, D., Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 6, 702-713 (2008)
[35] Yang, X.-S.; Karamanoglu, M.; He, X., Flower pollination algorithm: a novel approach for multiobjective optimization, Eng. Optim., 46, 9, 1222-1237 (2014)
[36] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey wolf optimizer, Adv. Eng. Softw., 69, 46-61 (2014)
[37] Yang, X.-S.; Gandomi, A. H., Bat algorithm: a novel approach for global engineering optimization, Eng. Comput. (2012)
[38] Gandomi, A. H.; Yang, X.-S.; Alavi, A. H., Mixed variable structural optimization using firefly algorithm, Comput. Struct., 89, 23-24, 2325-2336 (2011)
[39] Gandomi, A. H.; Yang, X.-S.; Alavi, A. H., Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 1, 17-35 (2013)
[40] Mirjalili, S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-based Syst., 89, 228-249 (2015)
[41] Deb, K., An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Engrg., 186, 2-4, 311-338 (2000) · Zbl 1028.90533
[42] Xia, L.; Zhang, L.; Xia, Q.; Shi, T., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356-370 (2018) · Zbl 1440.74322
[43] Gandomi, A. H.; Deb, K., Implicit constraints handling for efficient search of feasible solutions, Comput. Methods Appl. Mech. Engrg., 363, Article 112917 pp. (2020) · Zbl 1436.74051
[44] Fesanghary, M.; Mahdavi, M.; Minary-Jolandan, M.; Alizadeh, Y., Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 3080-3091 (2008) · Zbl 1194.74243
[45] Rao, S. S., Engineering Optimization: Theory and Practice (2019), John Wiley & Sons
[46] Gholizadeh, S.; Salajegheh, E., Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel, Comput. Methods Appl. Mech. Engrg., 198, 37-40, 2936-2949 (2009) · Zbl 1229.74114
[47] Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M., Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 5, 2592-2612 (2013)
[48] Baykasoğlu, A.; Akpinar, Ş., Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization, Appl. Soft Comput., 37, 396-415 (2015)
[49] K. Ragsdell, D. Phillips, Optimal design of a class of welded structures using geometric programming.
[50] Deb, K., Optimal design of a welded beam via genetic algorithms, AIAA J., 29, 11, 2013-2015 (1991)
[51] Lee, K. S.; Geem, Z. W., A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg., 194, 36-38, 3902-3933 (2005) · Zbl 1096.74042
[52] Huang, F.-z.; Wang, L.; He, Q., An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186, 1, 340-356 (2007) · Zbl 1114.65061
[53] He, Q.; Wang, L., An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 1, 89-99 (2007)
[54] Kaveh, A.; Khayatazad, M., A new meta-heuristic method: ray optimization, Comput. Struct., 112, 283-294 (2012)
[55] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv. Eng. Softw., 95, 51-67 (2016)
[56] Elaziz, M. A.; Oliva, D.; Xiong, S., An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl., 90, 484-500 (2017)
[57] Arora, J. S., Introduction to Optimum Design (2004), Elsevier
[58] Coello, C. A.C., Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 2, 113-127 (2000)
[59] Mahdavi, M.; Fesanghary, M.; Damangir, E., An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188, 2, 1567-1579 (2007) · Zbl 1119.65053
[60] Mezura-Montes, E.; Coello, C. A.C., An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37, 4, 443-473 (2008) · Zbl 1219.90129
[61] Sandgren, E., Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des., 112, 2, 223-229 (1990)
[62] Liu, H.; Cai, Z.; Wang, Y., Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10, 2, 629-640 (2010)
[63] He, Q.; Wang, L., A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization, Appl. Math. Comput., 186, 2, 1407-1422 (2007) · Zbl 1117.65088
[64] Kaveh, A.; Talatahari, S., An improved ant colony optimization for constrained engineering design problems, Eng. Comput., 27, 1, 155-182 (2010) · Zbl 1284.74093
[65] Zhang, M.; Luo, W.; Wang, X., Differential evolution with dynamic stochastic selection for constrained optimization, Inform. Sci., 178, 15, 3043-3074 (2008)
[66] Tsai, J.-F., Global optimization of nonlinear fractional programming problems in engineering design, Eng. Optim., 37, 4, 399-409 (2005)
[67] Ray, T.; Saini, P., Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng. Optim., 33, 6, 735-748 (2001)
[68] Czerniak, J. M.; Zarzycki, H.; Ewald, D., Aao as a new strategy in modeling and simulation of constructional problems optimization, Simul. Model. Pract. Theory, 76, 22-33 (2017)
[69] Guedria, N. B., Improved accelerated pso algorithm for mechanical engineering optimization problems, Appl. Soft Comput., 40, 455-467 (2016)
[70] Baykasoğlu, A.; Ozsoydan, F. B., Adaptive firefly algorithm with chaos for mechanical design optimization problems, Appl. Soft Comput., 36, 152-164 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.