×

Global existence and decay estimates of energy of solutions for a new class of \(p\)-Laplacian heat equations with logarithmic nonlinearity. (English) Zbl 1464.35151

Summary: The present research paper is related to the analytical studies of \(p\)-Laplacian heat equations with respect to logarithmic nonlinearity in the source terms, where by using an efficient technique and according to some sufficient conditions, we get the global existence and decay estimates of solutions.

MSC:

35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35K20 Initial-boundary value problems for second-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alves, C. O.; Boudjeriou, T., Existence of solution for a class of heat equation involving the p(x) Laplacian with triple regime, Zeitschrift für angewandte Mathematik und Physik, 72, 1 (2021) · Zbl 1456.35117 · doi:10.1007/s00033-020-01430-5
[2] Buljan, H.; Siber, A.; Soljacic, M.; Schwartz, T.; Segev, M.; Christodoulides, D. N., Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Physics Review, 68, 258-275 (2003)
[3] Chaharlang, M. M.; Ragusa, M. A.; Razani, A., A sequence of radially symmetric weak solutions for some nonlocal elliptic problem in R - N, Mediterranean Journal of Mathematics, 17, 2 (2020) · Zbl 1437.35285 · doi:10.1007/s00009-020-1492-x
[4] Chen, P.; Gurtin, M., On a theory of heat conduction involving two temperatures, Zeitschrift für Angewandte Mathematik und Physik, 19, 4, 614-627 (1968) · Zbl 0159.15103 · doi:10.1007/BF01594969
[5] Del Pino, M.; Dolbeault, J., Diffusions non lineaires et constantes optimales dans des inegalites de type Sobolev : comportement asymptotique d’equations faisant intervenir le p -Laplacien, Comptes Rendus Mathematique, 334, 5, 365-370 (2002) · Zbl 1090.35096 · doi:10.1016/S1631-073X(02)02225-2
[6] Goodrich, M. A.; Ragusa, M. A., Holder continuity of weak solutions of p-Laplacian PDEs with VMO coefficients, Nonlinear Analysis-Theory Methods and Applications, 185, 336-355 (2019) · Zbl 1418.35058 · doi:10.1016/j.na.2019.03.015
[7] Enqvist, K.; McDonald, J., Q-balls and baryogenesis in the MSSM, Physics Letters B, 425, 3-4, 309-321 (1998) · doi:10.1016/S0370-2693(98)00271-8
[8] Hiramatsu, T.; Kawasaki, M.; Takahashi, F., Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, 2010, 6 (2010) · doi:10.1088/1475-7516/2010/06/008
[9] Hosseini, K.; Mirzazadeh, M.; Rabiei, F.; Baskonus, H. M.; Yel, G., Dark optical solitons to the Biswas-Arshed equation with high order dispersions and absence of the self-phase modulation, Optik, 209, article 164576 (2020) · doi:10.1016/j.ijleo.2020.164576
[10] Hosseini, K.; Samavat, M.; Mirzazadeh, M.; Ma, W. X.; Hammouch, Z., A new (3+1)-dimensional Hirota bilinear equation: its Bäcklund transformation and rational-type solutions, Regular and Chaotic Dynamics, 25, 4, 383-391 (2020) · Zbl 1450.37065 · doi:10.1134/S156035472004005X
[11] Hu, B.; Yin, H.-M., Semilinear parabolic equations with prescribed energy, Rendiconti del Circolo Matematico di Palermo, 44, 3, 479-505 (1995) · Zbl 0856.35063 · doi:10.1007/BF02844682
[12] Boularas, S., Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory term and integral condition via Galerkin method, Fractals (2021) · Zbl 1482.35238 · doi:10.1142/S0218348X21400211
[13] Ioku, N., The Cauchy problem for heat equations with exponential nonlinearity, Journal of Differential Equations, 251, 4-5, 1172-1194 (2011) · Zbl 1233.35108 · doi:10.1016/j.jde.2011.02.015
[14] Piskin, E.; Boulaaras, S.; Irkil, N., Qualitative analysis of solutions for thep‐Laplacian hyperbolic equation with logarithmic nonlinearity, Mathematicsl Methods in the Applied Sciences, 44, 6, 4654-4672 (2021) · Zbl 1472.35171 · doi:10.1002/mma.7058
[15] Qu, C.; Bai, X.; Zheng, S., Blow-up versus extinction in a nonlocal \(p\)-Laplace equation with Neumann boundary conditions, Journal of Mathematical Analysis and Applications, 412, 1, 326-333 (2014) · Zbl 1364.35176 · doi:10.1016/j.jmaa.2013.10.040
[16] Piskin, E.; Irkil, N., Mathematical behavior of solutions of p-Laplacian equation with logarithmic source term, Sigma Journal of Engineering and Natural Sciences, 10, 213-220 (2019)
[17] Vladimirov, V. S., The equation of the p-adic open string for the scalar tachyon field, Zvestiya: Mathematics, 69, 487-512 (2005) · Zbl 1086.81073 · doi:10.1070/im2005v069n03abeh000536
[18] Bialynicki-Birula, I.; Mycielski, J., Nonlinear wave mechanics, Annals of Physics, 100, 1-2, 62-93 (1976) · doi:10.1016/0003-4916(76)90057-9
[19] Gorka, P., Logarithmic Klein-Gordon equation, Acta Physica Polonica B, 40, 59-66 (2009) · Zbl 1371.81101
[20] Bialynicki-Birula, I.; Mycielski, J., Wave equations with logarithmic nonlinearities, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences, Mathematiques, Astronomiques et Physiques, 23, 461-466 (1975)
[21] Boulaaras, S.; Draifia, A.; Alnegga, M., Polynomial decay rate for Kirchhoff type in viscoelasticity with logarithmic nonlinearity and not necassarily decreasing kernel, Symmetry, 11, 1-24 (2019) · Zbl 1416.35156
[22] Cazenave, T.; Haraux, A., Équations d’évolution avec non linéarité logarithmique, Annales de la faculté des sciences de Toulouse Mathématiques, 2, 1, 21-51 (1980) · Zbl 0411.35051 · doi:10.5802/afst.543
[23] Chen, H.; Luo, P.; Liu, G., Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, Journal of Mathematical Analysis and Applications, 422, 1, 84-98 (2015) · Zbl 1302.35071 · doi:10.1016/j.jmaa.2014.08.030
[24] Chen, H.; Tian, S. Y., Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, Journal of Differential Equations, 258, 84-98 (2015) · Zbl 1370.35190 · doi:10.1016/j.jde.2015.01.038
[25] Cao, Y.; Liu, C., Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinerity, Electronic Journal of Differential Equations, 116, 1-19 (2018) · Zbl 1391.35230
[26] Han, X. S., Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bulletin of the Korean Mathematical Society, 50, 1, 275-283 (2013) · Zbl 1262.35150 · doi:10.4134/BKMS.2013.50.1.275
[27] Le, C. N.; Le, X. T., Global solution and blow up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Computers & Mathematcs with Applications, 73, 2076-2091 (2017) · Zbl 1386.35244 · doi:10.1016/j.camwa.2017.02.030
[28] Merah, A.; Mesloub, F.; Boulaaras, S. M.; Cherif, B.-B., A new result for a blow-up of solutions to a logarithmic flexible structure with second sound, Advances in Mathematical Physics, 2021 (2021) · Zbl 1478.35052 · doi:10.1155/2021/5555930
[29] Choucha, A.; Boulaaras, S.; Ouchenane, D.; Beloul, S., General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Mathematicsl Methods in the Applied Sciences, 2020 (2020) · Zbl 1471.35043 · doi:10.1002/mma.7121
[30] Yan, L.; Yang, Z., Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Boundary Value Problems, 2018, 1 (2018) · Zbl 1499.35107 · doi:10.1186/s13661-018-1042-7
[31] Zhang, H. W.; Liu, G. W.; Hu, Q. Y., Asymptotic behavior for a class of logarithmic wave equations with linear damping, Applied Mathematics and Optimization, 79, 131-144 (2019) · Zbl 1415.35043
[32] Wu, Y.; Xue, X., Uniform decay rate estimates for a class of quasilinear hyperbolic equations with nonlinear damping and source terms, Applicable Analysis, 92, 6, 1169-1178 (2013) · Zbl 1275.35150 · doi:10.1080/00036811.2012.661043
[33] Piskin, E., On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Boundary Value Problems, 127 (2015) · Zbl 1338.35055 · doi:10.1186/s13661-015-0395-4
[34] Ladyzhenskaya, O. A.; Solonnikov, V. A.; Uralyseva, N. N., Linear and quasi-linear equations of parablic type, Transl. Matah. Monogr, Mauka Moskow, 23 (1967), American Mathematical Soc. · Zbl 0164.12302
[35] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22, 3-4, 273-303 (1975) · Zbl 0317.35059 · doi:10.1007/BF02761595
[36] Boulaaras, S.; Bouizem, Y., Blow up of solutions for a nonlinear viscoelastic system with general source term, Quaestiones Mathematicae, 1-11 (2020) · Zbl 1486.35072 · doi:10.2989/16073606.2020.1851308
[37] Boulaaras, S.; Bouizem, Y.; Guefaifia, R., Further results of existence of positive solutions of elliptic Kirchhoff equation with general nonlinearity of source terms, Mathematicsl Methods in the Applied Sciences, 43, 15, 9195-9205 (2020) · Zbl 1454.35132 · doi:10.1002/mma.6613
[38] Boulaaras, S.; Haiour, M., The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indagationes Mathematicae, 24, 1, 161-173 (2013) · Zbl 1254.65104 · doi:10.1016/j.indag.2012.07.005
[39] Boulaaras, S.; Haiour, M.,_L_^∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Applied Mathematics and Computation, 217, 14, 6443-6450 (2011) · Zbl 1211.65083 · doi:10.1016/j.amc.2011.01.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.