×

Flow and residence time in a two-dimensional aquifer recharged by rainfall. (English) Zbl 1493.76096

Summary: We investigate the flow of water in a two-dimensional laboratory aquifer recharged by artificial rainfall. As rainwater infiltrates, it forms a body of groundwater which can exit the aquifer only through one of its sides. The outlet, located high above the aquifer bottom, drives the flow upwards. Noting that the water table barely departs from the horizontal, we linearize the boundary condition at the free surface, and solve the flow equations in steady state. We find an approximate expression for the velocity potential, which accounts for the shape of the streamlines, and for the propagation of dye through the aquifer. Based on this theory, we calculate the travel time of water through the experiment, and find that its distribution decays exponentially, with a characteristic time that depends on the shape of the aquifer. We find that the hydrodynamic dispersion that occurs at the pore scale does not matter much for this distribution, which depends essentially on the geometry of the groundwater flow.

MSC:

76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography

Software:

FreeFem++
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Andreotti, B., Forterre, Y. & Pouliquen, O.2013Granular Media: Between Fluid and Solid. Cambridge University Press. · Zbl 1388.76001
[2] Boussinesq, J.1903Sur un mode simple d’écoulement des nappes d’eau d’infiltration à lit horizontal, avec rebord vertical tout autour lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond. CR Acad. Sci.137 (5), 11. · JFM 34.0813.02
[3] Bresciani, E., Davy, P. & De Dreuzy, J.-R.2014Is the dupuit assumption suitable for predicting the groundwater seepage area in hillslopes?Water Resour. Res.50 (3), 2394-2406.
[4] Brutsaert, W. & Nieber, J.L.1977Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res.13 (3), 637-643.
[5] Cardenas, M.B.2007Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: residence time distribution analysis of tóth flow. Geophys. Res. Lett.34 (5), L05403.
[6] Cartwright, I., Cendón, D., Currell, M. & Meredith, K.2017A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J. Hydrol.555, 797-811.
[7] Charlaix, E., Hulin, J.P. & Plona, T.J.1987Experimental study of tracer dispersion in sintered glass porous materials of variable compaction. Phys. fluids30 (6), 1690-1698.
[8] Dagan, G.1964Second order linearized theory of free-surface flow in porous media. La Houille Blanche1964 (8), 901-910.
[9] Darcy, H.1856Les fontaines publiques de la ville de Dijon. Dalmont.
[10] Davis, S.N. & Bentley, H.W.1982Dating Groundwater: A Short Review. ACS Publications.
[11] De Marsily, G.1986Quantitative hydrogeology. Paris School of Mines, Fontainebleau.
[12] Dentz, M., Le Borgne, T., Englert, A. & Bijeljic, B.2011Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol.120, 1-17.
[13] Devauchelle, O., Petroff, A.P., Seybold, H.F. & Rothman, D.H.2012Ramification of stream networks. Proc. Natl Acad. Sci. USA109 (51), 20832-20836.
[14] Dupuit, J.1863Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables. Dunod.
[15] Farlow, S.J.1993Partial Differential Equations for Scientists and Engineers. Courier Corporation. · Zbl 0851.35001
[16] Gelhar, L.W., Welty, C. & Rehfeldt, K.R.1992A critical review of data on field-scale dispersion in aquifers. Water Resour. Res.28 (7), 1955-1974.
[17] Gleeson, T., Befus, K.M., Jasechko, S., Luijendijk, E. & Cardenas, M.B.2016The global volume and distribution of modern groundwater. Nat. Geosci.9 (2), 161-167.
[18] Godsey, S.E., et al.2010Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrol. Process.24 (12), 1660-1671.
[19] Guérin, A.2015 Dynamics of groundwater flow in an unconfined aquifer. Theses, Université Paris Diderot (Paris 7), Sorbonne Paris Cité.
[20] Guérin, A., Devauchelle, O. & Lajeunesse, E.2014Response of a laboratory aquifer to rainfall. J. Fluid Mech.759, R1.
[21] Guérin, A., Devauchelle, O., Robert, V., Kitou, T., Dessert, C., Quiquerez, A., Allemand, P. & Lajeunesse, É.2019Stream-discharge surges generated by groundwater flow. Geophys. Res. Lett.46 (13), 7447-7455.
[22] Guyon, E., Hulin, J.P. & Petit, L.2001Hydrodynamique Physique. EDP Sciences/CNRS Editions.
[23] Haitjema, H.M. & Mitchell-Bruker, S.2005Are water tables a subdued replica of the topography?Groundwater43 (6), 781-786.
[24] Hamming, R.W.1973 Numerical methods for scientists and engineers, 2nd edition. McGraw Hill. · Zbl 0262.65001
[25] Haria, A.H. & Shand, P.2004Evidence for deep sub-surface flow routing in forested upland wales: implications for contaminant transport and stream flow generation. Hydrol. Earth Syst. Sci. Discuss.8 (3), 334-344.
[26] Hecht, F.2012New development in freefem++. J. Numer. Math.20 (3-4), 251-265. · Zbl 1266.68090
[27] Hillel, D.2003Introduction to Environmental Soil Physics. Elsevier.
[28] Ingebritsen, S.E. & Sanford, W.E.1999Groundwater in Geologic Processes. Cambridge University Press.
[29] Kirchner, J.W., Feng, X. & Neal, C.2000Fractal stream chemistry and its implications for contaminant transport in catchments. Nature403 (6769), 524-527.
[30] Le Borgne, T., De Dreuzy, J.-R., Davy, P. & Bour, O.2007Characterization of the velocity field organization in heterogeneous media by conditional correlation. Water Resour. Res.43 (2), W02419.
[31] Lehr, J.H.1963Groundwater: flow toward an effluent stream. Science140 (3573), 1318-1320.
[32] Lobkovsky, A.E., Jensen, B., Kudrolli, A. & Rothman, D.H.2004Threshold phenomena in erosion driven by subsurface flow. J. Geophys. Res.109 (F4), F04010.
[33] Maher, K.2010The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett.294 (1-2), 101-110.
[34] Nauman, E.B. & Buffham, B.A.1983Mixing in Continuous Flow Systems. John Wiley and Sons.
[35] Petroff, A.P., Devauchelle, O., Abrams, D.M., Lobkovsky, A.E., Kudrolli, A. & Rothman, D.H.2011Geometry of valley growth. J. Fluid Mech.673 (6), 245-254. · Zbl 1225.76133
[36] Polubarinova-Kochina, P.Y.1962Theory of Ground Water Movement. Princeton University Press. · Zbl 0114.42601
[37] Powers, W.L., Kirkham, D. & Snowden, G.1967Orthonormal function tables and the seepage of steady rain through soil bedding. J. Geophys. Res.72 (24), 6225-6237. · Zbl 0171.46603
[38] Read, W.W.1993Series solutions for Laplace’s equation with nonhomogeneous mixed boundary conditions and irregular boundaries. Math. Comput. Model.17 (12), 9-19. · Zbl 0783.31001
[39] Rempe, D.M. & Dietrich, W.E.2014A bottom-up control on fresh-bedrock topography under landscapes. Proc. Natl Acad. Sci. USA111 (18), 6576-6581.
[40] Rubinstein, L.I.2000The Stefan Problem, vol. 8. American Mathematical Society.
[41] Saffman, P.G.1959A theory of dispersion in a porous medium. J. Fluid Mech.6 (3), 321-349.
[42] Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T. & Metzger, B.2020Velocity distributions, dispersion and stretching in three-dimensional porous media. J. Fluid Mech.891, A16. · Zbl 1460.76769
[43] Toth, J.1963A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res.68 (16), 4795-4812.
[44] Troch, P.A., et al.2013The importance of hydraulic groundwater theory in catchment hydrology: the legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resour. Res.49 (9), 5099-5116.
[45] Van De Giesen, N.C., Parlange, J.-Y. & Steenhuis, T.S.1994Transient flow to open drains: comparison of linearized solutions with and without the dupuit assumption. Water Resour. Res.30 (11), 3033-3039.
[46] Varni, M. & Carrera, J.1998Simulation of groundwater age distributions. Water Resour. Res.34 (12), 3271-3281.
[47] Zwietering, T.N.1959The degree of mixing in continuous flow systems. Chem. Engng Sci.11 (1), 1-15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.