×

Collision in the interior of wormhole. (English) Zbl 1461.83038

Summary: The Schwarzschild wormhole has been interpreted as an entangled state. If Alice and Bob fall into each of the black hole, they can meet in the interior. We interpret this meeting in terms of the quantum circuit that prepares the entangled state. Alice and Bob create growing perturbations in the circuit, and we argue that the overlap of these perturbations represents their meeting. We compare the gravity picture with circuit analysis, and identify the post-collision region as the region storing the gates that are not affected by any of the perturbations.

MSC:

83C57 Black holes
81P42 Entanglement measures, concurrencies, separability criteria
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[2] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057 · doi:10.1002/prop.201300020
[3] Swingle, B., Entanglement Renormalization and Holography, Phys. Rev. D, 86, 065007 (2012) · doi:10.1103/PhysRevD.86.065007
[4] Hartman, T.; Maldacena, J., Time Evolution of Ent anglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[5] Susskind, L., Entanglement is not enough, Fortsch. Phys., 64, 49 (2016) · Zbl 1429.81021 · doi:10.1002/prop.201500095
[6] Stanford, D.; Susskind, L., Complexity and Shock Wave Geometries, Phys. Rev. D, 90, 126007 (2014) · doi:10.1103/PhysRevD.90.126007
[7] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[8] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett., 116, 191301 (2016) · doi:10.1103/PhysRevLett.116.191301
[9] Zhao, Y., Uncomplexity and Black Hole Geometry, Phys. Rev. D, 97, 126007 (2018) · doi:10.1103/PhysRevD.97.126007
[10] Hayden, P.; Preskill, J., Black holes as mirrors: Quantum information in random subsystems, JHEP, 09, 120 (2007) · doi:10.1088/1126-6708/2007/09/120
[11] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
[12] Susskind, L.; Thorlacius, L.; Uglum, J., The Stretched horizon and black hole complementarity, Phys. Rev. D, 48, 3743 (1993) · doi:10.1103/PhysRevD.48.3743
[13] F. M. Haehl and Y. Zhao, Size and momentum of an infalling particle in the black hole interior, arXiv:2102.05697 [INSPIRE].
[14] T. Dray and G. ‘t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys.99 (1985) 613 [INSPIRE].
[15] Shenker, SH; Stanford, D., Multiple Shocks, JHEP, 12, 046 (2014) · Zbl 1390.83222 · doi:10.1007/JHEP12(2014)046
[16] A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G. Salton et al., Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes, arXiv:1911.06314 [INSPIRE].
[17] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[18] T. Dray and G. ‘t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B253 (1985) 173 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.