×

Discrete and higher-form symmetries in SCFTs from wrapped M5-branes. (English) Zbl 1461.81119

Summary: We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to \(\mathrm{AdS}_5\). These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d \(\mathcal{N} = 1\) SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a \(\mathbb{Z}_2\) orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T33 Dimensional compactification in quantum field theory
81R40 Symmetry breaking in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B., Generalized global symmetries, JHEP, 02, 172 (2015) · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[2] Córdova, C.; Freed, DS; Lam, HT; Seiberg, N., Anomalies in the space of coupling constants and their dynamical applications I, SciPost Phys., 8, 001 (2020) · doi:10.21468/SciPostPhys.8.1.001
[3] Córdova, C.; Freed, DS; Lam, HT; Seiberg, N., Anomalies in the space of coupling constants and their dynamical applications II, SciPost Phys., 8, 002 (2020) · doi:10.21468/SciPostPhys.8.1.002
[4] Morrison, DR; Schäfer-Nameki, S.; Willett, B., Higher-form symmetries in 5d, JHEP, 09, 024 (2020) · Zbl 1454.81231 · doi:10.1007/JHEP09(2020)024
[5] Albertini, F.; Del Zotto, M.; García Etxebarria, I.; Hosseini, SS, Higher form symmetries and M-theory, JHEP, 12, 203 (2020) · Zbl 1457.81085 · doi:10.1007/JHEP12(2020)203
[6] E. Witten, Some comments on string dynamics, in the proceedings of STRINGS’95: future perspectives in string theory, March 13-18, Los Angeles, U.S.A. (1995) [hep-th/9507121] [INSPIRE].
[7] Strominger, A., Open p-branes, Phys. Lett. B, 383, 44 (1996) · Zbl 0903.53053 · doi:10.1016/0370-2693(96)00712-5
[8] Blum, JD; Intriligator, KA, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B, 506, 199 (1997) · Zbl 0925.81262 · doi:10.1016/S0550-3213(97)00449-5
[9] Gaiotto, D., N = 2 dualities, JHEP, 08, 034 (2012) · Zbl 1397.81362 · doi:10.1007/JHEP08(2012)034
[10] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1397.81364
[11] Maruyoshi, K.; Taki, M.; Terashima, S.; Yagi, F., New Seiberg dualities from N = 2 dualities, JHEP, 09, 086 (2009) · doi:10.1088/1126-6708/2009/09/086
[12] Benini, F.; Tachikawa, Y.; Wecht, B., Sicilian gauge theories and N = 1 dualities, JHEP, 01, 088 (2010) · Zbl 1269.81080 · doi:10.1007/JHEP01(2010)088
[13] Bah, I.; Wecht, B., New N = 1 superconformal field theories in four dimensions, JHEP, 07, 107 (2013) · Zbl 1342.81475 · doi:10.1007/JHEP07(2013)107
[14] Bah, I.; Beem, C.; Bobev, N.; Wecht, B., AdS/CFT dual pairs from M 5-branes on Riemann surfaces, Phys. Rev. D, 85, 121901 (2012) · doi:10.1103/PhysRevD.85.121901
[15] Bah, I.; Beem, C.; Bobev, N.; Wecht, B., Four-dimensional SCFTs from M 5-branes, JHEP, 06, 005 (2012) · Zbl 1397.81218 · doi:10.1007/JHEP06(2012)005
[16] Duff, MJ; Liu, JT; Minasian, R., Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys. B, 452, 261 (1995) · Zbl 0925.81148 · doi:10.1016/0550-3213(95)00368-3
[17] Witten, E., Five-brane effective action in M-theory, J. Geom. Phys., 22, 103 (1997) · Zbl 0878.58063 · doi:10.1016/S0393-0440(97)80160-X
[18] Freed, D.; Harvey, JA; Minasian, R.; Moore, GW, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys., 2, 601 (1998) · Zbl 0971.81152 · doi:10.4310/ATMP.1998.v2.n3.a8
[19] Harvey, JA; Minasian, R.; Moore, GW, Non-Abelian tensor multiplet anomalies, JHEP, 09, 004 (1998) · Zbl 0953.81093 · doi:10.1088/1126-6708/1998/09/004
[20] Bah, I.; Bonetti, F.; Minasian, R.; Nardoni, E., Class \(\mathcal{S}\) anomalies from M-theory inflow, Phys. Rev. D, 99, 086020 (2019) · doi:10.1103/PhysRevD.99.086020
[21] Bah, I.; Bonetti, F.; Minasian, R.; Nardoni, E., Anomaly inflow for M 5-branes on punctured Riemann surfaces, JHEP, 06, 123 (2019) · Zbl 1416.83111 · doi:10.1007/JHEP06(2019)123
[22] Bah, I.; Bonetti, F.; Minasian, R.; Nardoni, E., Anomalies of QFTs from M-theory and holography, JHEP, 01, 125 (2020) · Zbl 1434.81057 · doi:10.1007/JHEP01(2020)125
[23] Bah, I.; Bonetti, F.; Minasian, R.; Weck, P., Anomaly inflow methods for SCFT constructions in type IIB, JHEP, 02, 116 (2021) · Zbl 1460.83085 · doi:10.1007/JHEP02(2021)116
[24] Maldacena, JM; Moore, GW; Seiberg, N., D-brane charges in five-brane backgrounds, JHEP, 10, 005 (2001) · doi:10.1088/1126-6708/2001/10/005
[25] Banks, T.; Seiberg, N., Symmetries and strings in field theory and gravity, Phys. Rev. D, 83, 084019 (2011) · doi:10.1103/PhysRevD.83.084019
[26] Bergman, O.; Tachikawa, Y.; Zafrir, G., Generalized symmetries and holography in ABJM-type theories, JHEP, 07, 077 (2020) · Zbl 1451.83076 · doi:10.1007/JHEP07(2020)077
[27] Bah, I.; Bonetti, F., Anomaly inflow, accidental symmetry, and spontaneous symmetry breaking, JHEP, 01, 117 (2020) · Zbl 1434.83142 · doi:10.1007/JHEP01(2020)117
[28] Gauntlett, JP; Martelli, D.; Sparks, J.; Waldram, D., Supersymmetric AdS_5solutions of M-theory, Class. Quant. Grav., 21, 4335 (2004) · Zbl 1059.83038 · doi:10.1088/0264-9381/21/18/005
[29] Ohmori, K.; Shimizu, H.; Tachikawa, Y.; Yonekura, K., Anomaly polynomial of general 6d SCFTs, PTEP, 2014 (2014) · Zbl 1331.81266
[30] Freed, DS; Moore, GW; Segal, G., Heisenberg groups and noncommutative fluxes, Annals Phys., 322, 236 (2007) · Zbl 1115.83031 · doi:10.1016/j.aop.2006.07.014
[31] Dijkgraaf, R.; Witten, E., Topological gauge theories and group cohomology, Commun. Math. Phys., 129, 393 (1990) · Zbl 0703.58011 · doi:10.1007/BF02096988
[32] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE]. · Zbl 1383.83180
[33] Cámara, PG; Ibáñez, LE; Marchesano, F., RR photons, JHEP, 09, 110 (2011) · Zbl 1301.81192 · doi:10.1007/JHEP09(2011)110
[34] Berasaluce-Gonzalez, M.; Cámara, PG; Marchesano, F.; Regalado, D.; Uranga, AM, Non-Abelian discrete gauge symmetries in 4d string models, JHEP, 09, 059 (2012) · Zbl 1397.83125 · doi:10.1007/JHEP09(2012)059
[35] Witten, E., On flux quantization in M-theory and the effective action, J. Geom. Phys., 22, 1 (1997) · Zbl 0908.53065 · doi:10.1016/S0393-0440(96)00042-3
[36] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly inflow and p-form gauge theories, arXiv:2003.11550 [INSPIRE].
[37] Maldacena, JM; Núñez, C., Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A, 16, 822 (2001) · Zbl 0984.83052 · doi:10.1142/S0217751X01003937
[38] Kapustin, A.; Saulina, N., Topological boundary conditions in abelian Chern-Simons theory, Nucl. Phys. B, 845, 393 (2011) · Zbl 1207.81060 · doi:10.1016/j.nuclphysb.2010.12.017
[39] S. Gukov, E. Martinec, G. W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS_3/CFT_2correspondence, hep-th/0403225 [INSPIRE].
[40] D. Belov and G. W. Moore, Conformal blocks for AdS_5singletons, hep-th/0412167 [INSPIRE].
[41] Moore, GW, Anomalies, Gauss laws, and Page charges in M-theory, Comptes Rendus Physique, 6, 251 (2005) · doi:10.1016/j.crhy.2004.12.005
[42] Witten, E., AdS/CFT correspondence and topological field theory, JHEP, 12, 012 (1998) · Zbl 0949.81054 · doi:10.1088/1126-6708/1998/12/012
[43] Gross, DJ; Ooguri, H., Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev. D, 58, 106002 (1998) · doi:10.1103/PhysRevD.58.106002
[44] Hofman, DM; Iqbal, N., Generalized global symmetries and holography, SciPost Phys., 4, 005 (2018) · doi:10.21468/SciPostPhys.4.1.005
[45] Witten, E., Baryons and branes in Anti-de Sitter space, JHEP, 07, 006 (1998) · Zbl 0958.81081
[46] Aharony, O.; Seiberg, N.; Tachikawa, Y., Reading between the lines of four-dimensional gauge theories, JHEP, 08, 115 (2013) · Zbl 1342.81248 · doi:10.1007/JHEP08(2013)115
[47] C. Córdova, T. Dumitrescu and K. Intriligator, to appear.
[48] Tachikawa, Y.; Yonekura, K., Anomalies involving the space of couplings and the Zamolodchikov metric, JHEP, 12, 140 (2017) · Zbl 1383.83191 · doi:10.1007/JHEP12(2017)140
[49] Kim, HJ; Romans, LJ; van Nieuwenhuizen, P., The mass spectrum of chiral N = 2 D = 10 supergravity on S^5, Phys. Rev. D, 32, 389 (1985) · doi:10.1103/PhysRevD.32.389
[50] Intriligator, KA; Wecht, B., The exact superconformal R symmetry maximizes a, Nucl. Phys. B, 667, 183 (2003) · Zbl 1059.81602 · doi:10.1016/S0550-3213(03)00459-0
[51] R. Bott and A. S. Cattaneo, Integral invariants of 3-manifolds, J. Diff. Geom.48 (1998) 91 [dg-ga/9710001]. · Zbl 0953.57008
[52] J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and Topology, J. C. Alexander and J. L. Harer eds., Springer, Germany (1985). · Zbl 0621.57010
[53] M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and M-theory, J. Diff. Geom.70 (2005) 329 [math/0211216] [INSPIRE]. · Zbl 1116.58018
[54] Bauer, M.; Girardi, G.; Stora, R.; Thuillier, F., A class of topological actions, JHEP, 08, 027 (2005) · doi:10.1088/1126-6708/2005/08/027
[55] U. Bunke, Differential cohomology, arXiv:1208.3961. · Zbl 1447.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.