×

zbMATH — the first resource for mathematics

Oscillations semi-linéaires multiphasées compatibles en dimension 2 ou 3 d’espace. (French) Zbl 0736.35001
The author studies the solutions for \(\varepsilon\to0\) of the problem: \[ Pu_ \varepsilon+Q(x,u_ \varepsilon,du_ \varepsilon)=\sum_{k\in K}f_ k^ \varepsilon(x,\varphi_ k(x)/\varepsilon), \qquad u_{\varepsilon| t<0}=0, \] where \(P\) is a strictly hyperbolic second order operator, in space dimension 2 or 3, \(Q\) is a suitable quadratic form, and \(\varphi_ k(x)\) are phase functions of \(P\), for \(k\) in a finite set of indices \(K\). The author proves a result of global existence and gives a precise asymptotic expansion of \(u_ \varepsilon\) for \(\varepsilon\to 0\). Similar results in the one dimensional case were proved by J. L. Joly and J. Rauch [Journ. Equations Dériv. Partielles, St. Jean-De-Monts 1986, Conf. No. 11 (1986; Zbl 0614.35002)].
Reviewer: L.Rodino (Torino)

MSC:
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
35G25 Initial value problems for nonlinear higher-order PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Citations:
Zbl 0614.35002
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gérard P., Séminaire Equations aux dérivées partielles 6 (1988)
[2] Guè O., Preprint 42
[3] Hanouzet B., Séminaire Goulaouic-Meyer-Schwartz 14 (1981)
[4] Hörmander L., Grundlehren der mathematischen Wissenschaften (1985)
[5] Joly et j-L., Journées Equations aux Dérivées Partielles (1986)
[6] Joly et J-L., Research Notes in Mathematics pp 103–
[7] Joly et J-L., Modelling and Computation pp 202– (1987)
[8] Joly J-L., Justification of multidimensional semilinear geometric optics Preprint
[9] Joly J-L., En préparation
[10] Rauch et J., Indiana Univ. Math. J. 34 pp 337– (1985) · Zbl 0559.35053
[11] Rauch et J., in Nonlinear Partial Differential Equations and their Applications, V, IX, Research Notes in Mathematics 181 (1989)
[12] Sprindzhuk V. G., Metric theory of diophantine approximations (1979) · Zbl 0417.10044
[13] Tartar L., Lectures at Boulder (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.