×

Equivariant stable homotopy and Sullivan’s conjecture. (English) Zbl 0736.55008

A proof of the Sullivan conjecture is given [H. R. Miller, Ann. Math., II. Ser. 120, 39-87 (1984; Zbl 0552.55014)]:
Theorem VI.1: \(G\) a \(p\)-group, \(X\) a finite-dimensional \(G\)-complex, then \[ ({\mathbb{F}}_ p)_ \infty(X^ G)\rightarrow F_ G(EG,({\mathbb{F}}_ p)_ \infty X) \] is a weak equivalence, where \(({\mathbb{F}}_ p)_ \infty\) denotes \(\text{mod}_ p\) completion and \(F_ G(EG,-)\) homotopy fixed point set.
Equivariant stable homotopy \(\omega_ G(-)\) enters the picture by introducing \(\omega_ G\)-completion. The homotopy type is that of the \(\mathbb{Z}\)-completion (Cor. II.4), but \(\omega_ G\)-completion allows for finer cosimplicial filtrations (see II, especially Cor. II.11). The layers of the filtration can be analyzed via equivariant Snaith splitting [L. G. Lewis, J. P. May and M. Steinberger, Equivariant stable homotopy theory (1986; Zbl 0611.55001)]giving the link (sec. III) to the assertion of the Segal conjecture, that is: \(\omega_ G(X)^ G\rightarrow F_ G(EG,\omega_ G(X))\) is an equivalence after \(p\)-adic completion.

MSC:

55P60 Localization and completion in homotopy theory
55P91 Equivariant homotopy theory in algebraic topology
55Q91 Equivariant homotopy groups
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
55Q55 Cohomotopy groups
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Adams, J.F.: Prerequisities for Carlsson’s lecture. Proceedings of Aarhus Symposium on Algebraic Topology (Lect. Notes Math. vol. 1051, pp. 483-532) Berlin Heidelberg New York: Springer 1984
[2] Adams, J.F., Haeberly, J., Jackowski, S., May, J.P.: A generalization of the Segal Conjecture (to appear) · Zbl 0657.55017
[3] Atiyah, M.F., MacDonald, I.G.: Commutative Algebra. Reading Mass: Addison-Wesley, 1969 · Zbl 0175.03601
[4] Barr, M., Beck, J.: Acyclic models and triples. Proc. Conf. Categorical Algebra, Berlin Heidelberg New York: Springer, 1966, pp. 336-343 · Zbl 0201.35403
[5] Barratt, M.G.: The spectral sequence of an inclusion. Colloquium on Algebraic Topology, Aarhus, Denmark, 1962, pp. 22-27. · Zbl 0142.21502
[6] Bousfield, A.K., Kan, D.M.: The homotopy spectral sequence of a space with coefficients in a ring, Topology11, 79-106 (1972) · Zbl 0219.55015 · doi:10.1016/0040-9383(72)90024-9
[7] Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions, and Localizations (Lect. Notes Math. vol. 304) Berlin Heidelberg New York: Springer 1972. · Zbl 0259.55004
[8] Bredon, G.: Equivariant Cohomology Theories (Lect. Notes. Math. vol. 34) Berlin Heidelberg New York: Springer, 1967 · Zbl 0162.27202
[9] Carlsson, G.: Equivariant stable homotopy and Segal’s Burnside ring Conjecture. Ann. Math.120 189-224 (1984) · Zbl 0586.55008 · doi:10.2307/2006940
[10] Tom Dieck, T.: Orbittypen und aquivariante Homologie II.. Arch. Math.26, 650-662 (1975) · Zbl 0334.55004 · doi:10.1007/BF01229795
[11] Tom Dieck, T.: Transformation Groups and Representation Theory (Lect. Notes Math. vol. 766) Berlin Heidelberg New York: Springer, 1979 · Zbl 0445.57023
[12] Hopkins, M.J.: Some problems in topology, Oxford University Thesis, 1982
[13] Kosniowski, C.: Equivariant cohomology and stable cohomotpy. Math. Ann.210, 83-104 (1974) · Zbl 0282.18012 · doi:10.1007/BF01360033
[14] Lewis, L.G., May, J.P., McClure, J.E., Steinberger, M.: Equivariant Stable Homotopy Theory. (Lect. Notes Math.) Berlin Heidelberg New York. Springer (to appear)
[15] May, J.P., The Geometry of Iterated Loop Spaces (Lect. Notes Math. vol. 271) Berlin Heidelberg New York: Springer, 1972 · Zbl 0244.55009
[16] May, J.P., McClure, J.E.: A reduction of the Segal conjecture, Canadian Math. Soc. Conference Proceedings, Vol. 2, Part 2, pp. 209-220 · Zbl 0571.55008
[17] Miller, H.R.: The Sullivan conjecture on maps from classifying spaces. Ann. Math.120, 39-87 (1984) · Zbl 0552.55014 · doi:10.2307/2007071
[18] Segal, G.B.: Equivariant stable homotopy theory. Proceedings of the International Congress of Mathematicians at Nice, 1970 · Zbl 0197.20102
[19] Sullivan, D.: Geometric topology, Part I: localization, periodicity, and Galois symmetry. M.I.T. Press · Zbl 0366.57003
[20] Lashof, R.K., May, J.P.: Generalized equivariant bundles. Bull. Soc. Math. Belgique. vol. 38, (1986)
[21] Dwyer, W.G., Zabrodsky, A.: Maps between classifying spaces (Lect. Notes Math. vol. 1298, pp. 106-119) Berlin Heidelberg New York: Springer 1987 · Zbl 0646.55007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.