×

zbMATH — the first resource for mathematics

A model of pattern formation by precipitation. (English) Zbl 0736.92022
Summary: A model explaining the appearance of nonhomogeneous precipitation patterns (Liesegang bands) is suggested. The model takes into account effects of supersaturation, competition between nucleation and droplet growth kinetics as well as redistribution of matter between particles of precipitant. A simplified variant of this model is examined and it is shown that the model is capable to explain not only simple regular Liesegang patterns but also complex ones, such as helices.

MSC:
92E99 Chemistry
92E20 Classical flows, reactions, etc. in chemistry
92F05 Other natural sciences (mathematical treatment)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liesegang, R.E., Naturwiss. wochenschr., 11, 353, (1896)
[2] Ostwald, W., Lehrbuch der allgemeinen chemie, (1897), Engelmann Leipzig
[3] Kahlweit, M., Adv. colloid interf. sci., 5, 1, (1975)
[4] Kai, S.; Müller, S.C.; Ross, J., J. chem. phys., 76, 1392, (1982)
[5] Le Van, M.E.; Ross, J., J. phys. chem., 91, 6300, (1987)
[6] Flicker, M.; Ross, J., J. chem. phys., 60, 3458, (1974)
[7] Feinn, D.; Ortoleva, P.; Scalf, W.; Schmidt, S.; Wolf, M., J. chem. phys., 69, 947, (1978)
[8] Müller, S.C.; Kai, S.; Ross, J., J. phys. chem., 86, 4292-4297, (1982)
[9] Müller, S.C.; Kai, S.; Ross, J., J. phys. chem., 86, 4078-4087, (1982)
[10] Kai, S.; Müller, S.C.; Ross, J., J. phys. chem., 87, 806-813, (1983)
[11] Hatshek, E., Biochem. J., 14, 418, (1920)
[12] Müller, S.C.; Kai, S.; Ross, J., Science, 216, 635-637, (1982)
[13] Wagner, C., J. colloid sci., 5, 85, (1950)
[14] Prager, S., J. chem. phys., 25, 279, (1956)
[15] Zeldovitch, Ya.B.; Barenblatt, G.I.; Salganik, R.L., Sov. phys. dokl., 6, 869, (1962)
[16] Keller, J.B.; Rubinow, S.I., J. chem. phys., 74, 5000, (1981)
[17] Smith, D.A., J. chem. phys., 81, 3102, (1984)
[18] Dee, G.T., Phys. rev. lett., 57, 275, (1986)
[19] Lifshitz, I.M.; Slyozov, V.V., J. phys. chem. solids, 19, 35, (1961)
[20] Lovett, R.; Ortoleva, P.; Ross, J., J. chem. phys., 69, 947, (1978)
[21] Venzl, G.; Ross, J., J. chem. phys., 77, 1308, (1982)
[22] Feeney, R.; Schmidt, S.L.; Strickholm, P.; Chadam, J.; Ortoleva, P., J. chem. phys., 78, 1293, (1983)
[23] Ortoleva, P., Z. phys. B, 49, 149, (1982)
[24] Müller, S.C.; Venzl, G., Modelling of patterns in space and time, (), 254-278
[25] Venzl, G., J. chem. phys., 85, 1996, (1986)
[26] Müller, S.C., (), 249-257
[27] Lloyd, F.E.; Moravek, V., J. phys. chem., 35, 1512, (1931)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.