×

zbMATH — the first resource for mathematics

Well-posedness of the initial value problem for the Korteweg-de Vries equation. (English) Zbl 0737.35102
The author develops a mathematical theory of the initial value problem for the Korteweg-de Vries equation. A number of theorems is presented for the uniqueness and convergence of solutions. The paper will be very useful for theoretical analysts in this area.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35G25 Initial value problems for nonlinear higher-order PDEs
35D99 Generalized solutions to partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. B. Benjamin, Internal waves of permanent form in fluid of great depth, J. Fluid Mech. 29 (1967), 559-592. · Zbl 0147.46502
[2] Jerry Bona and Ridgway Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976), no. 1, 87 – 99. · Zbl 0335.35032
[3] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), no. 1287, 555 – 601. · Zbl 0306.35027
[4] A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092 – 1099. · Zbl 0151.16901
[5] Lennart Carleson, Some analytic problems related to statistical mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 5 – 45.
[6] R. R. Coifman and Y. Meyer, Au delá des opérateurs pseudodifféntieles, Astérisque 57 (1978).
[7] R. R. Coifman and Yves Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 3 – 45. · Zbl 0623.47052
[8] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413 – 439. · Zbl 0667.35061
[9] Björn E. J. Dahlberg and Carlos E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 205 – 209.
[10] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363 – 401. · Zbl 0535.35069
[11] J. Ginibre and G. Velo, Commutator expansions and smoothing properties of generalized Benjamin-Ono equations, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 2, 221 – 229 (English, with French summary). · Zbl 0705.35126
[12] -, Smoothing properties and existence of solutions for the generalized Benjamin-One equation, preprint.
[13] J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20 (1989), no. 6, 1388 – 1425. · Zbl 0702.35224
[14] T. Kato, Quasilinear equations of evolutions, with applications to partial differential equations, Lectures Notes in Math., vol. 448, Springer-Verlag, Berlin and New York, 1975, pp. 27-50.
[15] -, On the Korteweg-de Vries equation, Manuscripta Math. 29 (1979), 89-99. · Zbl 0415.35070
[16] Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93 – 128. · Zbl 0549.34001
[17] Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891 – 907. · Zbl 0671.35066
[18] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J. 59 (1989), no. 3, 585 – 610. · Zbl 0795.35105
[19] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33 – 69. · Zbl 0738.35022
[20] Carlos E. Kenig and Alberto Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), no. 1, 239 – 246. · Zbl 0525.42011
[21] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 39 (1895), 422-443. · JFM 26.0881.02
[22] S. N. Kruzhkov and A. V. Faminskiĭ, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 396 – 425 (Russian). · Zbl 0537.35068
[23] Bernard Marshall, Mixed norm estimates for the Klein-Gordon equation, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 638 – 649.
[24] Robert M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976), no. 3, 412 – 459. · Zbl 0333.35021
[25] Hiroaki Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), no. 4, 1082 – 1091. · Zbl 1334.76027
[26] Hartmut Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984), no. 2, 261 – 270. · Zbl 0538.35063
[27] Gustavo Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations 4 (1991), no. 3, 527 – 542. · Zbl 0732.35038
[28] Gustavo Ponce and Luis Vega, Nonlinear small data scattering for the generalized Korteweg-de Vries equation, J. Funct. Anal. 90 (1990), no. 2, 445 – 457. · Zbl 0771.35062
[29] J.-C. Saut, Sur quelques généralisations de l’équation de Korteweg-de Vries, J. Math. Pures Appl. (9) 58 (1979), no. 1, 21 – 61 (French). · Zbl 0449.35083
[30] J. C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math. 24 (1976), no. 1, 78 – 87. · Zbl 0334.35062
[31] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. · Zbl 0631.42010
[32] E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307 – 355.
[33] Elias M. Stein and Rami Shakarchi, Fourier analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, Princeton, NJ, 2003. An introduction. · Zbl 1026.42001
[34] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705 – 714. · Zbl 0372.35001
[35] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477 – 478. · Zbl 0298.42011
[36] Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874 – 878. · Zbl 0654.42014
[37] -, Doctoral thesis, Universidad Autonoma, Madrid, Spain, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.