zbMATH — the first resource for mathematics

Transfer operators for coupled map lattices. (English) Zbl 0737.58032
Let \(L\) denote a finite or infinite one-dimensional lattice. To each lattice site is attached a copy of a dynamical system with phase space \([0,1]\) and dynamics described by a transformation \(\tau: [0,1]\to [0,1]\), which is the same on each component. Denote the direct product of these identical systems by \(T: X\to X\) where \(X=[0,1]^ L\). From this product system we obtain a coupled map lattice (CML) \(S\epsilon: X\to X\), if we introduce some interaction between the components, e.g. by averaging between nearest neighbours. The strength of the coupling depends upon some parameter \(\epsilon\).
For a broad class of piecewise expanding single-component-transformations \(\tau\) we study such systems via their transfer operators and treat the coupled system as a perturbation of the uncoupled one. This yields existence and stability results for \(T\)-invariant measures with absolutely continuous finite-dimensional marginals. For a more restricted class of CML’s, L. A. Bunimovich and Ya. G. Sinaj [Nonlinearity 1, No. 4, 491-516 (1988; Zbl 0679.58028)] obtained existence and uniqueness results using methods from statistical mechanics.

37A99 Ergodic theory
28D05 Measure-preserving transformations
37E99 Low-dimensional dynamical systems
37D99 Dynamical systems with hyperbolic behavior
Full Text: DOI
[1] Keller, C.R. Acad. Sci. 291 pp 155– (1980)
[2] DOI: 10.1007/BF01667385 · Zbl 0496.58010 · doi:10.1007/BF01667385
[3] DOI: 10.1016/0375-9601(89)90606-3 · doi:10.1016/0375-9601(89)90606-3
[4] DOI: 10.2307/1969514 · Zbl 0040.06502 · doi:10.2307/1969514
[5] DOI: 10.1007/BF01215004 · Zbl 0485.28016 · doi:10.1007/BF01215004
[6] DOI: 10.1007/BF02764946 · Zbl 0691.28004 · doi:10.1007/BF02764946
[7] Giusti, Minimal Surfaces and Functions of Bounded Variation (1984) · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[8] DOI: 10.1088/0951-7715/1/4/001 · Zbl 0679.58028 · doi:10.1088/0951-7715/1/4/001
[9] Blank, Sov. Sci. Rev. C Math. Phys. 6 pp 243– (1987)
[10] Ziemer, Weakly Differentiable Functions. Graduate Texts in Mathematics 120 (1989) · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
[11] Suquet, Travaux Sém. Analyse Convexe 8 pp none– (1978)
[12] Schaefer, Topohgical Vector Spaces (1966)
[13] Rychlik, Studia Math. LXXVI pp 69– (1983)
[14] Pinkus, n-widths in Approximation Theory (1985) · doi:10.1007/978-3-642-69894-1
[15] DOI: 10.2307/1996575 · Zbl 0298.28015 · doi:10.2307/1996575
[16] DOI: 10.2307/1999819 · Zbl 0564.47015 · doi:10.2307/1999819
[17] Komornik, Dyn. Rep. none pp none– (none)
[18] Keller, C.R. Acad. Sci. 289 pp 625– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.