×

The anti-Hawking effect on a BTZ black hole with Robin boundary conditions. (English) Zbl 07408671

Summary: We compute the transition rate of an Unruh-DeWitt detector coupled both to a ground state and to a KMS state of a massless, conformally coupled scalar field on a static BTZ black hole with Robin boundary conditions. We observe that, although the anti-Hawking effect is manifest for the ground state, this is not the case for the KMS state. In addition, we show that our analysis applies with minor modifications also to the anti-Unruh effect on Rindler-\(\mathrm{AdS}_3\) spacetime.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Unruh, W. G., Phys. Rev. D, 14, 870 (1976)
[2] DeWitt, B., General Relativity; an Einstein Centenary Survey (1980), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0445.53040
[3] Hodgkinson, L.; Louko, J., Phys. Rev. D, 86, Article 064031 pp. (2012)
[4] Louko, J.; Satz, A., Class. Quantum Gravity, 25, Article 055012 pp. (2008) · Zbl 1136.83019
[5] Louko, J.; Satz, A., Class. Quantum Gravity, 23, 6321-6344 (2006)
[6] Ng, K. K.; Hodgkinson, L.; Louko, J.; Mann, R. B.; Martin-Martinez, E., Phys. Rev. D, 90, 6, Article 064003 pp. (2014)
[7] Henderson, L. J.; Hennigar, R. A.; Mann, R. B.; Smith, A. R.H.; Zhang, J., Phys. Lett. B, Article 135732 pp. (2020) · Zbl 1473.81029
[8] Brenna, W. G.; Mann, R. B.; Martin-Martinez, E., Phys. Lett. B, 757, 307-311 (2016)
[9] Garay, L. J.; Martín-Martínez, E.; de Ramón, J., Phys. Rev. Lett., 94, Article 104048 pp. (1999)
[10] Dappiaggi, C.; Ferreira, H.; Marta, A., Phys. Rev. D, 98, 2, Article 025005 pp. (2018)
[11] Dappiaggi, C.; Ferreira, H. R.C.; Juárez-Aubry, B. A., Phys. Rev. D, 97, 8, Article 085022 pp. (2018)
[12] Dappiaggi, C.; Ferreira, H. R.C., Phys. Rev. D, 94, 12, Article 125016 pp. (2016)
[13] Bussola, F.; Dappiaggi, C., Class. Quantum Gravity, 36, 1, Article 015020 pp. (2019) · Zbl 1475.83057
[14] Campos, L.; Dappiaggi, C., Phys. Rev. D, 103, 2, Article 025021 pp. (2021)
[15] Garbarz, A.; La Madrid, J.; Leston, M., Eur. Phys. J. C, 77, 11, 807 (2017)
[16] Ishibashi, A.; Wald, R. M., Class. Quantum Gravity, 21, 2981-3014 (2004)
[17] Banados, M.; Teitelboim, C.; Zanelli, J., Phys. Rev. Lett., 69, 1849-1851 (1992) · Zbl 0968.83514
[18] Parikh, M.; Samantray, P., J. High Energy Phys., 10, Article 129 pp. (2018) · Zbl 1402.83060
[19] Deser, S.; Levin, O., Class. Quantum Gravity, 14, L163-L168 (1997) · Zbl 0884.53059
[20] Deser, S.; Levin, O., Phys. Rev. Lett., 59, Article 064004 pp. (1999)
[21] Fewster, C. J.; Juárez-Aubry, B. A.; Louko, J., Class. Quantum Gravity, 33, 16, Article 165003 pp. (2016) · Zbl 1346.83033
[22] Bussola, F.; Dappiaggi, C.; Ferreira, H. R.C.; Khavkine, I., Phys. Rev. D, 96, 10, Article 105016 pp. (2017)
[23] Zettl, A., Sturm-Liouville Theory (2005), American Mathematical Society · Zbl 1074.34030
[24] (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.