zbMATH — the first resource for mathematics

On 0-dimensional complete intersections. (English) Zbl 0741.14030
Given a 0-dimensional subscheme \(Y\) of \(\mathbb{P}^ d\), the paper discusses ways to characterize whether \(Y\) is a complete intersection, using numerical and geometrical properties of the embedding \(Y\subseteq\mathbb{P}^ d\). — In section 2 the well-known characterization of 0-dimensional complete intersections in \(\mathbb{P}^ 2\) by the symmetry of their Hilbert function and the Cayley-Bacharach property is shown to yield a characterization of 0-dimensional arithmetically Gorenstein schemes in general. This is accomplished by a careful study of the Cayley-Bacharach property using traces of the affine and projective coordinate rings of \(Y\).
For \(d\geq 3\) these invariants do not suffice anymore to characterize complete intersections. In section 3 the 0-dimensional zeroschemes of regular sections of certain vector bundles of rank 3 on \(\mathbb{P}^ 3\), called vector bundles with very good sections, are characterized. This and a suitable version of Horrocks’ splitting criterion are then used in section 4 to find the desired additional conditions for a characterization of 0-dimensional complete intersections in \(\mathbb{P}^ 3\). All characterizations are illustrated by examples.

14M10 Complete intersections
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
PDF BibTeX Cite
Full Text: DOI EuDML
[1] Bruns, W., Vetter, U.: Determinantal rings. (Lect. Notes Math., vol. 1327) Berlin Heidelberg New York: Springer 1988 · Zbl 1079.14533
[2] Coand?, I.: The Chern classes of the stable rank 3 vector bundles on ?3. Math. Ann.273, 65-79 (1985) · Zbl 0588.14010
[3] Davis, E., Geramita, A. V., Orecchia, F.: Gorenstein algebras and the Cayley-Bacharach theorem. Proc. Am. Math. Soc.93, 593-597 (1985) · Zbl 0575.14040
[4] Davis, E., Maroscia, P.: Complete intersections in ?3: Cayley-Bacharach characterizations. In: Greco, S., Strano, R. (eds.), Complete intersections. Acireale 1983. (Lect. Notes Math., vol. 1092, pp. 253-269) Berlin Heidelberg New York: Springer 1984 · Zbl 0556.14025
[5] Griffiths, P., Harris, J.: Residues and zero-cycles, on algebraic varieties. Ann. Math.108, 461-505 (1978) · Zbl 0423.14001
[6] Goto, S., Watanabe, K.: On graded rings I. J. Math. Soc. Japan30, 179-213 (1978) · Zbl 0378.13006
[7] Hartshorne, R.: Algebraic geometry. (Grad. Texts. Math., vol. 52) Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001
[8] Hartshorne, R.: Stable reflexive sheaves. Math. Ann.254, 121-176 (1980) · Zbl 0437.14008
[9] Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc.14, 689-713 (1964) · Zbl 0126.16801
[10] Kreuzer, M.: Vector bundles with good sections. The Curves Seminar at Queen’s vol. VII. (Queen’s Pap. Pure Appl. Math., vol. 85) Kingston: Queen’s University 1990
[11] Kreuzer, M.: Vektorb?ndel und der Satz von Cayley-Bacharach. Dissertation. (Regensburger Math. Schr. vol 21) Universit?t Regensburg 1989 · Zbl 0685.14012
[12] Kreuzer, M., Kunz, E.: Traces in strict Frobenius algebras and strict complete intersections. J. Reine Angew. Math.381, 181-204 (1987) · Zbl 0626.13009
[13] Peskine, C., Szpiro, L.: Liaisons des vari?t?s alg?briques I. Invent. Math.26, 271-302 (1974) · Zbl 0298.14022
[14] Serre, J.P.: Sur les modules projectivs. (S?min. Dubreil14, Fasc. 1, expos? 2 1960/61) Paris: Secr. Math. 1963
[15] Watanabe, K.: Study of algebras with straightening laws of dimension 2. In: Algebraic and topological theories ? to the memory of Dr. Takehiko Miyata., pp. 622-639, Tokyo 1985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.