zbMATH — the first resource for mathematics

Pointwise analysis of Riemann’s “nondifferentiable” function. (English) Zbl 0741.26004
We show how to analyse the local regularity of functions with the help of the wavelet transform. These results will be applied to the function of Riemann, where we show the existence of a dense set of points where this function is differentiable. On another dense set we show the existence of local singularities of cusp type. On a third set we show differentiability to the right (left). On the remaining set the function will be shown to be not differentiable.
Reviewer: M.Holschneider

26A27 Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives
42C15 General harmonic expansions, frames
Full Text: DOI EuDML
[1] Weierstrass, K.: Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten differentialquotienten besitzen. Mathematische Werke II, 71-74. Königl. Akad. Wiss.: 1872
[2] Hardy, G.H.: Wererstrass’s nondifferentiable function, Trans. Am. Math. Soc.17, 301-325 (1916) · JFM 46.0401.03
[3] Hardy, G.H., Littlewood, E.: Some problems of diophantine approximation II. Acta Math.37, 194-238 (1914) · JFM 45.0305.03
[4] Gerver, J.: The Differentiability of the Riemann function at certain rational multiples of ?. Am. J. Math. XCII., Nr. 1 (1970) · Zbl 0203.05904
[5] Gerver, J.: More on the differentiability of the Riemann function. Am. J. Math.93, 33-41 (1970) · Zbl 0228.26008 · doi:10.2307/2373445
[6] Queffelec, M.: Dérivabilité de certains sommes de séries de Fourier lacunnaires. Note au C.R. Séan. Acad. Sci.273, Sér. A, 291-293 (2.8.1971) · Zbl 0221.26008
[7] Queffelec, M.: Dérivabilité de certains sommes de séries de Fourier lacunnaires. Centre de Orssay, Université Paries-Sud (Thèse 3e cycle) juin 1971
[8] Holschneider, M.: On the Wavelet transform of Fractal Objects. J. Stat. Phys.5/6, 963-993 (1988) · Zbl 1084.42518 · doi:10.1007/BF01019149
[9] Calderon, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Stud. Math.20, 171-225 (1961) · Zbl 0099.30103
[10] Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press 1979
[11] Jaffard, S.: Exposants de Holder en des points donnes et coefficients d’ondelettes. C. R. Acad. Sci., Paris, Sér. I.308, 7 (1989)
[12] Grossmann, A., Morlet, J.: In: Streit, L. (ed.) Mathematics and Physics, Lectures on recent results. Singapore: World Scientific Publishing 1987
[13] Lemarie, P.G., Meyer, Y.: Ondelettes et bases Hilbertiennes. Rev. Mat. Iberoam.1, 1286 (1987)
[14] Arneodo, A., Grasseau, G., Holschneider, M.: On the Wavelet transform of Multifractals. Phys. Rev. Lett.61, Nr. 20 (1988) · Zbl 0850.42005
[15] Coifman, R., Meyer, Y.: Au délà des opérateurs pseudo-différentiels. Astérisque57 (1978)
[16] Paul, T.: Ondelettes et mécanique quantique. Thesis. Marseile (1985)
[17] Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Berlin Heidelberg New York: Springer (1976) · Zbl 0332.10017
[18] Gunning, R.C.: Lectures on Modular Forms. Princeton: Princeton University Press 1962 · Zbl 0178.42901
[19] Mumford, D.: Tata Lectures on Theta 1. Boston: Birkhäuser (1983) · Zbl 0509.14049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.