×

zbMATH — the first resource for mathematics

Weierstrass semigroups and the canonical ideal of non-trigonal curves. (English) Zbl 0742.14029
The author studies Weierstraß gap sequences for non-hyperelliptic complete irreducible algebraic curves over an algebraically closed field of arbitrary characteristic. Using the canonical embedding and his result on Weierstraß semigroups he gives (under certain restrictions) an explicit monomial basis for the space of \(n\)-fold regular differentials. He gives a criterion of non-trigonality in terms of the Weierstraß gap sequences and constructs in this case a minimal set of generators of the canonical ideal.

MSC:
14H55 Riemann surfaces; Weierstrass points; gap sequences
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [ACGH] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves, vol. I. Springer-Verlag, New York (1985) · Zbl 0559.14017
[2] [B] Buchweitz, R.-O.: Über Deformationem monomialer Kurvensingularitäten und Weierstrasspunkte auf Riemannschen Flächen. Thesis, Hannover (1976)
[3] [Ca] Canuto, G.: Weierstrass points on trigonal curves of genus five. Bull. Soc. Math. France, 113 (1985), 157–182 · Zbl 0599.14024
[4] [Co1] Coppens, M.: The Weierstrass gap sequences of the ordinary ramification points of trigonal covering ofP 1; Existence of a kind of Weierstrass gap sequence. J. Pure Appl. Algebra, 43 (1986), 11–25 · Zbl 0616.14012 · doi:10.1016/0022-4049(86)90002-2
[5] [Co2] –: The Weierstrass gap sequence of the total ramification points of trigonal coverings ofP 1. Indag Math. 47 (1985), 245–276 · Zbl 0592.14025
[6] [EH] Eisenbud, D., Harris, J.: Existence, decomposition, and limits of certain Weierstrass points. Invent. Math., 87 (1987), 495–515 · Zbl 0606.14014 · doi:10.1007/BF01389240
[7] [GaVi] Garcia, A.; Viana, P.: Weierstrass points on certain non-classical curves. Arch. Math., 46 (1986), 315–322 · Zbl 0575.14014 · doi:10.1007/BF01200462
[8] [Ka1] Kato, T.: Non-hyperelliptic Weierstrass points of maximal weight. Math. Ann., 239 (1979), 141–147 · Zbl 0401.30037 · doi:10.1007/BF01420372
[9] [Ka2] –: On Weierstrass points whose first non-gaps are three. J. reine angew. Math., 316 (1980), 99–109 · Zbl 0419.30037 · doi:10.1515/crll.1980.316.99
[10] [Ki] Kim, S.J.: On the Existence of Weierstrass Gap Sequences on Trigonal Curves, J. Pure Appl. Algebra, 63 (1990), 171–180 · Zbl 0712.14019 · doi:10.1016/0022-4049(90)90024-C
[11] [Pe] Petri, K.: Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen. Math. Ann., 88 (1922), 242–289 · JFM 49.0264.02 · doi:10.1007/BF01579181
[12] [Pf] Pflaum, U.: The Canonical Constellations ofk-Weierstrass Points. Manuscripta Math., 59 (1987), 21–34 · Zbl 0631.14011 · doi:10.1007/BF01171262
[13] [S-D] Saint-Donat, B.: On Petri’s analysis of the linear system of quadrics through a canonical curve. Math. Ann., 206 (1973), 157–175 · Zbl 0315.14010 · doi:10.1007/BF01430982
[14] [StVi1] Stöhr, K.O.; Viana, P.: A variant of Petri’s analysis of the canonical ideal of an algebraic curve. Manuscripta Math., 61 (1988), 223–248 · Zbl 0661.14025 · doi:10.1007/BF01259331
[15] [StVi2] Stöhr, K.O.; Viana, P.: Weierstrass Gap Sequences and Moduli Varieties of Trigonal Curves. To appear · Zbl 0768.14016
[16] [StVo] Stöhr, K.O.; Voloch, J.F.: Weierstrass points and curves over finite fields. Proc. London Math. Soc. (3) 52 (1986), 1–19 · Zbl 0593.14020 · doi:10.1112/plms/s3-52.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.