×

zbMATH — the first resource for mathematics

First order Hamilton-Jacobi equations with integro differential terms. I: Uniqeness of viscosity solutions. (Equations d’Hamilton-Jacobi du premier ordre avec termes intégro- différentiels. I: Unicité des solutions de viscosité.) (French) Zbl 0742.45004
For the review see part II [ibid. 16, No. 6/7, 1075-1093 (1991; reviewed below)].
Reviewer: J.Chrastina (Brno)

MSC:
45K05 Integro-partial differential equations
70H20 Hamilton-Jacobi equations in mechanics
35Q72 Other PDE from mechanics (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barles Guy, Non linear Analysis 9 (1985)
[2] Bensoussan et A., Contrôle impulsionnel et inéquations quasi-variationnells (1982)
[3] Bony J.M., C.R. Acad Sci. 265 pp 331– (1967)
[4] DOI: 10.1090/S0002-9947-1984-0732102-X · doi:10.1090/S0002-9947-1984-0732102-X
[5] M. G. Crandall ,P. L. Lions .,On existence and uniqueness of solutions of Hamilton-Jacobi equations Non linear Anal. T.M.A. in press · Zbl 0603.35016
[6] DOI: 10.1090/S0002-9947-1983-0690039-8 · doi:10.1090/S0002-9947-1983-0690039-8
[7] Souganidis P. E., I.M.A. 10 (1983)
[8] M. H. A. Davis :Piecewise deterministe Markov Processes : a general class of non-diffusion stochastic models.Preprint
[9] F.Gimbert :Second ordre ellliptic integro-differential operators in RN Hamilton-Jacobi-Bellman equations
[10] Gimbert et F., Ricerche di Matematica. 33 (1984)
[11] H.Ishii ,P. L. Lions ,Viscosity solutions of second order. (A paraître)
[12] Lasry J. M., Israel Jornal of Mathematics 55 (1986)
[13] S.Lenhart ,Y. C.Liao ,Integro-differential equations associated with piecewise deterministic process Preprint · Zbl 0582.60053
[14] Lenhart S., Ind. Univ. Math. J. 55 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.