×

A novel practical quantum secure direct communication protocol. (English) Zbl 1523.81054

Summary: A novel practical quantum secure direct communication (QSDC) protocol is constructed by utilizing the evolution law of atom via cavity QED. It transmits the atoms from one communicant to the other communicant in a two-step manner. It adopts two-atom product states as the initial quantum resource and the decoy atom technique to guarantee the security against the outside attack. It only needs single-atom measurements, and neither the quantum entanglement swapping nor the unitary operations.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proc IEEE Int Conf Comput Syst and Signal Process, 175-179 (1984) · Zbl 1306.81030
[2] Long, GL; Liu, XS, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A, 65, 3, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[3] Deng, FG; Long, GL; Liu, XS, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A, 68, 4, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[4] Wang, J.; Zhang, Q.; Tang, CJ, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A, 358, 4, 256-258 (2006) · Zbl 1142.81342 · doi:10.1016/j.physleta.2006.05.035
[5] Tan, XQ; Zhang, XQ, Controlled quantum secure direct communication by entanglement distillation or generalized measurement, Quantum Inf. Process, 15, 5, 2137-2154 (2016) · Zbl 1338.81114 · doi:10.1007/s11128-016-1268-1
[6] Wang, LL; Ma, WP; Wang, ML; Shen, DS, Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom, Int. J. Theor. Phys., 55, 2490-2499 (2016) · Zbl 1338.81178 · doi:10.1007/s10773-015-2886-6
[7] Wu, FZ; Yang, GJ; Wang, HB; Xiong, J.; Alzahrani, F.; Hobiny, A.; Deng, FG, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron., 60, 120313 (2017) · doi:10.1007/s11433-017-9100-9
[8] Chen, SS; Zhou, L.; Zhong, W.; Sheng, YB, Three-step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron., 61, 90312 (2018) · doi:10.1007/s11433-018-9224-5
[9] Khorasani, FM; Houshmand, M.; Anzabi-Nezhad, NS, Authenticated controlled quantum secure direct communication protocol based on five-particle brown states, Int. J. Theor. Phys., 59, 1612-1622 (2020) · Zbl 1457.94214 · doi:10.1007/s10773-020-04429-w
[10] Bebrov, G.; Dimova, R., Efficient quantum secure direct communication protocol based on quantum channel compression, Int. J. Theor. Phys., 59, 426-435 (2020) · Zbl 1433.81062 · doi:10.1007/s10773-019-04336-9
[11] Shu, J., Quantum State Preparation and Quantum Information Processing in Cavity QED, 19-20 (2007), Heifei: University of science and technology of China, Heifei
[12] Zheng, SB; Guo, GC, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett., 85, 2392-2395 (2000) · doi:10.1103/PhysRevLett.85.2392
[13] Zheng, SB, Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion, Phys. Rev. A, 68, 035801 (2003) · doi:10.1103/PhysRevA.68.035801
[14] Shan, CJ; Liu, JB; Chen, T.; Liu, TK; Huang, YX; Li, H., Controlled quantum secure direct communication with local separate measurements in cavity QED, Int. J. Theor. Phys., 49, 334-342 (2010) · Zbl 1185.81064 · doi:10.1007/s10773-009-0206-8
[15] Shan, CJ; Liu, JB; Cheng, WW; Liu, TK; Huang, YX; Li, H., Bidirectional quantum secure direct communication in driven cavity QED, Mod. Phys. Lett. B, 23, 3225-3234 (2009) · Zbl 1180.81055 · doi:10.1142/S0217984909021259
[16] Shor, PW; Preskill, J., Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 85, 2, 441-444 (2000) · doi:10.1103/PhysRevLett.85.441
[17] Lin, J.; Hwang, T., An enhancement on Shi et al.’s multiparty quantum secret sharing protocol, Opt. Commun., 284, 5, 1468-1471 (2011) · doi:10.1016/j.optcom.2010.10.095
[18] Chen, JH; Lee, KC; Hwang, T., The enhancement of Zhou et al.’s quantum secret sharing protocol, Int. J. Mod. Phy. C, 20, 10, 1531-1535 (1999) · Zbl 1180.81053 · doi:10.1142/S0129183109014576
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.