Journé, J.-L.; Soffer, A.; Sogge, C. D. Decay estimates for Schrödinger operators. (English) Zbl 0743.35008 Commun. Pure Appl. Math. 44, No. 5, 573-604 (1991). Using the spectral theorem the unitary operator \(e^{itH_ 0}\) is well defined for \(t\in\mathbb{R}\), if \(H_ 0=-(\partial/\partial x_ 1)^ 2- \cdots-(\partial/\partial x_ n)^ 2\) is minus the Laplacian. Given initial data \(f(x)\) the function \(u(\cdot,t)=e^{itH_ 0}f\) solves the time dependent Schrödinger equation \(i\partial u/\partial t+H_ 0u=0\), \(u|_{t=0}=f\). Since the kernel of \(e^{itH_ 0}\) is \((4\pi it)^{n/2}e^{| x-y|^ 2/4it}\), one sees that the solution is dispersive in the sense that \[ \| u(\cdot,t)\|_{L^{p'}(\mathbb{R}^ n)}\leq Ct^{-n(1/p-1/2)}\| f\|_{L^ p(\mathbb{R}^ n)}, t>0,\quad\text{ if } 1\leq p\leq 2, \text{ and } 1/p+1/p'=1. \] This paper replaces the free operator \(H_ 0\) by more general Hamiltonians \(H=- \Delta+V(x)\) with suitable singularity assumptions on \(V(x)\). Let \(P_ c\) denote projection onto the continuous part of the spectrum of \(H\). The norm result is: Let \(n\geq 3\). Then if 0 is neither an eigenvalue nor a resonance for \(H\), \(\| e^{itH}P_ c\psi\|_{L^{p'}(\mathbb{R}^ n)}\leq ct^{-n(1/p-1/2)}\|\psi\|_{L^ P(\mathbb{R}^ n)}\), \(t>0\). Reviewer: I.N.Katz (St.Louis) Cited in 2 ReviewsCited in 121 Documents MSC: 35B40 Asymptotic behavior of solutions to PDEs 35G10 Initial value problems for linear higher-order PDEs 35K25 Higher-order parabolic equations 35J10 Schrödinger operator, Schrödinger equation 35Q40 PDEs in connection with quantum mechanics Keywords:Schrödinger equation; dispersive PDF BibTeX XML Cite \textit{J. L. Journé} et al., Commun. Pure Appl. Math. 44, No. 5, 573--604 (1991; Zbl 0743.35008) Full Text: DOI OpenURL References: [1] Some analytical problems related to statistical mechanics, in Euclidean Harmonic Analysis, Springer Lecture Notes in Math 779, 1979, pp. 5–45. [2] Constantin, J. Amer. Math. Soc. 1 pp 431– (1988) [3] , , and , Schrödinger operators, Springer-Verlag Texts and Monographs in Physics, 1987. [4] Higher transcendental functions II, Krieger Publ. Co., Malabar, FL, 1981. [5] Jensen, Duke Math. J. 47 pp 57– (1980) [6] Jensen, J. Math. Anal. Appl. 101 pp 397– (1984) [7] Jensen, Duke Math. J. 46 pp 583– (1979) [8] Kenig, Proc. Amer. Math. Soc. 103 pp 543– (1988) [9] Intertwining methods in multi-dimensional scattering theory I, University of Lund and Lund Institute of Technology preprint series, 1987: 13. [10] Rauch, Comm. Math. Phys. 61 pp 149– (1978) [11] and , Methods of mathematical physics II: Fourier analysis, self-adjointness, 1975, also in: III: Scattering theory, Academic Press, San Diego, 1979. [12] Sjölin, Duke Math. J. 55 pp 699– (1987) [13] Soffer, Comm. Math. Physics 133 pp 119– (1990) [14] Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, 1986. [15] Strauss, J. Funct. Analysis 41 pp 110– (1981) [16] Strauss, J. Funct. Analysis 43 pp 281– (1981) [17] Strichartz, Duke Math. J. 44 pp 705– (1977) [18] Vega, Proc. Amer. Math. Soc. 102 pp 874– (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.