Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential. (English) Zbl 0743.60058

Summary: We prove the complete exponential localization of eigenfunctions for the 1-D discrete Schrödinger operators with quasi-periodic potentials having two basic frequencies. It is shown also that for such operators there are no forbidden zones in the spectrum, unlike the operators with one basic frequency.


60H25 Random operators and equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI


[1] Mott, N., Twose, W.D.: Adv. Phys.10, 107 (1961)
[2] Borland, R.E.: The nature of the electronic states in disordered one-dimensional systems. Proc. R. Soc. London A274, 529 (1963) · Zbl 0114.23002
[3] Goldsheid, I.Ya., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger equation. Funkt. Anal. Appl.11, 1 (1977) · Zbl 0368.34015
[4] Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys.78, 201 (1980) · Zbl 0449.60048
[5] Carmona, R.: Exponential localization in one dimensional disordered systems. Duke Math. J.49, 191 (1982) · Zbl 0491.60058
[6] Simon, B., Taylor, M., Wolf, T.: Some rigorous results for the Anderson model. Phys. Rev. Lett.54, 1589 (1985)
[7] Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys.88, 151 (1983) · Zbl 0519.60066
[8] Fröhlich, J., Spencer, T.: A rigorous approach to Anderson localization. Phys. Rep.103, 9 (1984)
[9] Fröhlich, J., Spencer, T.: Mathematical theory of Anderson localization, Proc. IAMP Conf. Boulder. Physica124A, 303 (1984) · Zbl 0591.60060
[10] Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys.101, 21 (1985) · Zbl 0573.60096
[11] Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isreal Phys. Soc.3, 133 (1980) · Zbl 0943.82510
[12] Avron, J., Simon, B.: Almost periodic Schrödinger operators. II. The density of states. Duke Math. J.50, 369 (1983) · Zbl 0544.35030
[13] Figotin, A.L., Pastur, L.A.: The positivity of Lyapunov exponent and the absence of absolutely continuous spectrum for the Almost-Mathieu equation, J. Math. Phys.25, 774 (1984) · Zbl 0555.39002
[14] Bellissard, J., Lima, R., Scoppola, E.: Localization inv-dimensional incommensurate structures. Commun. Math. Phys.88, 207 (1983) · Zbl 0542.35059
[15] Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys.46, 861 (1987) · Zbl 0682.34023
[16] Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasiperiodic Schrödinger operators. Preprint, 1987 · Zbl 0722.34070
[17] Herman, M.: Une methode pour minorer des exposants de Lyapunov. Preprint, Palaiseau, 1982
[18] Pastur, L.A.: Lower bounds of the Lyapunov exponent for some finite-difference equations with quasi-periodic coefficients. In: Operators in functional spaces and problemes of the theory of functions, Kiev: Naukova Dumka 1987 (Russian)
[19] Johnson, R.A.: Private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.