×

The algorithmic numbers in non-Archimedean numerical computing environments. (English) Zbl 07439617

Summary: There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [1,5,13,23]. However, until now, the Non-standard techniques have been applied to theoretical models. In this paper we investigate the possibility to implement such models in numerical simulations. First we define the field of Euclidean numbers which is a particular field of hyperreal numbers. Then, we introduce a set of families of Euclidean numbers, that we have called altogether algorithmic numbers, some of which are inspired by the IEEE 754 standard for floating point numbers. In particular, we suggest three formats which are relevant from the hardware implementation point of view: the Polynomial Algorithmic Numbers, the Bounded Algorithmic Numbers and the Truncated Algorithmic Numbers. In the second part of the paper, we show a few applications of such numbers.

MSC:

65Y04 Numerical algorithms for computer arithmetic, etc.
26E30 Non-Archimedean analysis
26E35 Nonstandard analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. · Zbl 1191.60002
[2] V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell’ Università di Bari, vol. 261, pp. 29.
[3] V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285-326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. · Zbl 0973.26017
[4] V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of \(5\), chapter 8, pages 285-326. Springer, Berlin, 2000. · Zbl 0973.26017
[5] V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13, 461-486 (2013) · Zbl 1273.26035
[6] V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018. · Zbl 1405.26004
[7] V. Benci; M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173, 50-67 (2003) · Zbl 1028.03042
[8] V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. · Zbl 1429.26001
[9] V. Benci; M. Di Nasso; M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143, 43-53 (2006) · Zbl 1114.03055
[10] V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018.
[11] V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3-44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006. · Zbl 1104.03061
[12] V. Benci; P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1, 105-122 (2016)
[13] V. Benci; L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7, 593-616 (2014) · Zbl 1290.26038
[14] M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp. · Zbl 1451.90140
[15] M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite \(M\), Optimization Letters, 2020
[16] M. Cococcioni; M. Pappalardo; Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318, 298-311 (2018) · Zbl 1426.90226
[17] G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003. · Zbl 1029.90037
[18] L. Fiaschi; M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev’s Infinity Computing, International Journal of Unconventional Computing, 14, 1-25 (2018)
[19] L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
[20] P. Fletcher; K. Hrbacek; V. Kanovei; M. G. Katz; C. Lobry; S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42, 193-251 (2017) · Zbl 1435.03094
[21] L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
[22] T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892.
[23] K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. · Zbl 0756.93060
[24] K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. · Zbl 1390.03048
[25] Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4, 219-320 (2017) · Zbl 1390.03048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.