×

An efficient methodology for the physical sciences. (English) Zbl 0744.65039

This very interesting paper gives a new decomposition method for solving nonlinear functional equations of different kinds (integral, differential, partial differential, …).
Considering the general equation \(u-N(u)=f\) where \(N\) is a general nonlinear operator acting on a Hilbert or Banach space, the method consists in searching the exact solution under the form \(u=\sum^ \infty_{i=0}u_ i\) and to develop \(N(u)\) such as \(N(u)=\sum^ \infty_{i=0}A_ i\) where the \(A_ i\)’s are special polynomials ( Adomian’s polynomials) which can be generally easily calculated.
The \(A_ i\)’s depend only on \(u_ 0,\dots,u_ i\). The series’ terms are calculated by means of the relations \(u_ 0=f\), \(u_ 1=A_ 0,\dots,u_ i=A_{i-1},\dots\). The authors give applications of this technique to ordinary differential equations ( Schrödinger equation with a generalized potential) and to partial differential equations.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65Z05 Applications to the sciences
65L05 Numerical methods for initial value problems involving ordinary differential equations
35G05 Linear higher-order PDEs
34A34 Nonlinear ordinary differential equations and systems
47J25 Iterative procedures involving nonlinear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0895-7177(90)90125-7 · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7
[2] Adomian G., Non-linear Stochastic Operator Equations (1986) · Zbl 0609.60072
[3] Cherrault Y., Kybemetes 18
[4] DOI: 10.1007/BFb0041214 · doi:10.1007/BFb0041214
[5] DOI: 10.1007/BF00733348 · doi:10.1007/BF00733348
[6] DOI: 10.2514/3.9904 · doi:10.2514/3.9904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.