×

Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation. (English) Zbl 07440431

Summary: In this paper, we investigate some analytical, numerical and approximate analytical methods by considering time-fractional nonlinear Burger-Fisher equation (FBFE). (1/G’)-expansion method, finite difference method (FDM) and Laplace perturbation method (LPM) are considered to solve the FBFE. Firstly, we obtain the analytical solution of the mentioned problem via (1/G’)-expansion method. Also, we compare the numerical method solutions and point out which method is more effective and accurate. We study truncation error, convergence, Von Neumann’s stability principle and analysis of linear stability of the FDM. Moreover, we investigate the \(L_2\) and \(L_\infty\) norm errors for the FDM. According to the results of this study, it can be concluded that the finite difference method has a lower error level than the Laplace perturbation method. Nonetheless, both of these methods are totally settlement in obtaining efficient results of fractional order differential equations.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. A. Abro and J. Gómez-Aguilar, A comparison of heat and mass transfer on a waltersb fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the fox-H function, The European Physical Journal Plus, 134 (2019), 101.
[2] A. Allwright; A. Atangana, Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems, Discrete Contin. Dyn. Syst. Ser. S, 13, 443-466 (2020) · Zbl 1491.65077
[3] J. Alzabut, T. Abdeljawad, F. Jarad and W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), Paper No. 101, 12 pp. · Zbl 1499.26092
[4] A. Atangana; D. Baleanu, New fractional derivatives with nonlocal and non-singular Kernel: Theory and application to heat transfer model, Thermal Science, 20, 763-769 (2016)
[5] E. Balcı; İ. Öztürk; S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Solitons Fractals, 123, 43-51 (2019) · Zbl 1448.92095
[6] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. · Zbl 1248.26011
[7] E. Bas, B. Acay and R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110, 7 pp. · Zbl 1409.34044
[8] E. Bonyah, A. Atangana and M. A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta-derivative, Asia Pacific Journal on Computational Engineering, 4 (2017), 1.
[9] A. G. Bratsos; A. Q. M. Khaliq, An exponential time differencing method of lines for Burgers-Fisher and coupled Burgers equations, J. Comput. Appl. Math., 356, 182-197 (2019) · Zbl 1524.65320
[10] H. Bulut; D. Kumar; J. Singh; R. Swroop; H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+ T lymphocyte cells, Math. Nat. Sci., 2, 33-43 (2018)
[11] M. Caputo, Linear models of dissipation whose Q is almost frequency independentII, Geophysical Journal International, 13, 529-539 (1967)
[12] M. Caputo; M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 1-13 (2015)
[13] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, 2014. · Zbl 0917.73004
[14] V. Chandraker; A. Awasthi; S. Jayaraj, Numerical treatment of Burger-Fisher equation, Procedia Technology, 25, 1217-1225 (2016)
[15] W. Chen; L. Ye; H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl., 59, 1614-1620 (2010) · Zbl 1189.35356
[16] F. Evirgen and M. Yavuz, An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative, ITM Web of Conferences: EDP Sciences, 22, (2018), 01009.
[17] A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Solitons Fractals, 39, 1486-1492 (2009) · Zbl 1197.65061
[18] Z. Hammouch; T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal MESA, 5, 489-498 (2014) · Zbl 1305.35011
[19] Z. Hammouch; T. Mekkaoui, Approximate analytical and numerical solutions to fractional KPP-like equations, Gen. Math. Notes, 14, 1-9 (2013)
[20] Z. Hammouch; T. Mekkaoui; F. B. Belgacem, Numerical simulations for a variable order fractional Schnakenberg model, AIP Conference Proceedings, 1637, 1450-1455 (2014)
[21] J. Hristov, Space-fractional diffusion with a potential power-law coefficient: Transient approximate solution, Progress in Fractional Differentiation and Applications, 3, 19-39 (2017)
[22] H. N. A. Ismail; A. A. A. Rabboh, A restrictive padé approximation for the solution of the generalized Fisher and Burger-Fisher equations, Appl. Math. Comput., 154, 203-210 (2004) · Zbl 1050.65077
[23] F. Jarad; T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13, 709-722 (2020) · Zbl 1444.44002
[24] F. Jarad; T. Abdeljawad; Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117, 16-20 (2018) · Zbl 1442.34016
[25] D. Kaya; S. El-Sayed, A numerical simulation and explicit solutions of the generalized Burgers-Fisher equation, Appl. Math. Comput., 152, 403-413 (2004) · Zbl 1052.65098
[26] D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), Paper No. 77, 16 pp. · Zbl 1445.65033
[27] D. Kaya, A. Yokus and U. Demiroglu, Comparison of exact and numerical solutions for the Sharma-Tasso-Olver equation, In Numerical Solutions of Realistic Nonlinear Phenomena, Springer, Cham, (2020), 53-65.
[28] A. Keten, M. Yavuz and D. Baleanu, Nonlocal cauchy problem via a fractional operator involving power kernel in banach spaces, Fractal Fract., 3 (2019), 27.
[29] R. Khalil; M. Al Horani; A. Yousef; M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013
[30] D. Kumar; J. Singh; H. M. Baskonus; H. Bulut, An effective computational approach for solving local fractional telegraph equations, Nonlinear Sci. Lett. A: Math. Phys. Mech, 8, 200-206 (2017)
[31] V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Difference Equ., 2016 (2016), Paper No. 164, 17 pp. · Zbl 1419.35220
[32] P. A. Naik; M. Yavuz; S. Qureshi; J. Zu; S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, The European Physical Journal Plus, 135, 1-42 (2020)
[33] I. Podlubny, Fractional Differential Equation: An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of their Solution and some of their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. · Zbl 0924.34008
[34] M. B. Riaz; N. A. Asif; A. Atangana; M. I. Asjad, Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12, 645-664 (2019) · Zbl 1418.35312
[35] K. M. Saad, A. Atangana and D. Baleanu, New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos, 28 (2018), 063109, 6 pp. · Zbl 1394.35565
[36] N. A. Sheikh; F. Ali; M. Saqib; I. Khan; S. A. A. Jan; A. S. Alshomrani; M. S. Alghamdi, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7, 789-800 (2017)
[37] J. Singh; D. Kumar; Z. Hammouch; A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316, 504-515 (2018) · Zbl 1426.68015
[38] R. Subashini; C. Ravichandran; K. Jothimani; H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Contin. Dyn. Syst. Ser. S, 13, 911-923 (2020) · Zbl 1450.45006
[39] T. A. Sulaiman, M. Yavuz, H. Bulut and H. M. Baskonus, Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel, Phys. A, 527 (2019), 121126, 20 pp. · Zbl 07568257
[40] K. A. Touchent, Z. Hammouch, T. Mekkaoui and B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal Fract., 2 (2018), 22.
[41] F. Usta and Z. Sarikaya, On generalization of pachpatte type inequalities for conformable fractional integral, TWMS Journal of Applied and Engineering Mathematics, 8 (2018), 106. · Zbl 1400.26063
[42] F. Usta; M. Z. Sarikaya, The analytical solution of Van der Pol and Lienard differential equations within conformable fractional operator by retarded integral inequalities, Demonstr. Math., 52, 204-212 (2019) · Zbl 1423.26019
[43] P. Veeresha; D. G. Prakasha; J. Singh; D. Kumar; D. Baleanu, Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory, Chinese J. Phys., 68, 65-78 (2020)
[44] X. Wang; Y. Lu, Exact solutions of the extended Burgers-Fisher equation, Chinese Phys. Lett., 7, 145-147 (1990)
[45] A.-M. Wazwaz, The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations, Appl. Math. Comput., 169, 321-338 (2005) · Zbl 1121.65359
[46] X. Xiao-Jun; H. M. Srivastava; J. Machado, A new fractional derivative without singular kernel, Therm. Sci., 20, 753-756 (2016)
[47] X.-J. Yang; F. Gao; J. A. Tenreiro Machado; D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, The European Physical Journal Special Topics, 226, 3567-3575 (2017)
[48] M. Yavuz, Characterizations of two different fractional operators without singular kernel, Math. Model. Nat. Phenom., 14 (2019), 302, 13 pp. · Zbl 1423.26015
[49] M. Yavuz, Dynamical behaviors of separated homotopy method defined by conformable operator, Konuralp J. Math., 7, 1-6 (2019) · Zbl 1438.26017
[50] M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8, 1-7 (2018)
[51] M. Yavuz and T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Difference Equ., 2020 (2020), Paper No. 367, 18 pp. · Zbl 1485.35410
[52] M. Yavuz; E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A, 525, 373-393 (2019) · Zbl 07565786
[53] M. Yavuz and N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fract., 2 (2018), 3.
[54] M. Yavuz; N. Özdemir, Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Contin. Dyn. Syst. Ser. S, 13, 995-1006 (2020) · Zbl 1442.35532
[55] M. Yavuz and N. Özdemir, A different approach to the European option pricing model with new fractional operator, Math. Model. Nat. Phenom., 13 (2018), Paper No. 12, 12 pp. · Zbl 1405.91658
[56] M. Yavuz and N. Özdemir, New numerical techniques for solving fractional partial differential equations in conformable sense, in: Non-Integer Order Calculus and its Applications, Springer, 496 (2019), 49-62. · Zbl 1447.35366
[57] M. Yavuz, N. Özdemir and H. M. Baskonus, Solutions of partial differential equations using fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215.
[58] M. Yavuz and N. Sene, Stability analysis and numerical computation of the fractional Predator-Prey model with the harvesting rate, Fractal and Fractional, 4 (2020), 35.
[59] M. Yavuz; A. Yokus, Analytical and numerical approaches to nerve impulse model of fractional-order, Numer. Methods Partial Differential Equations, 36, 1348-1368 (2020)
[60] A. Yokus, On the exact and numerical solutions to the FitzHugh-Nagumo equation, Internat. J. Modern Phys. B, 34 (2020), 2050149, 12 pp. · Zbl 1443.37053
[61] A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method, Internat. J. Modern Phys. B, 32 (2018), 1850365, 12 pp. · Zbl 1423.35421
[62] A. Yokus; H. M. Baskonus; T. A. Sulaiman; H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionary system, Numer. Methods Partial Differential Equations, 34, 211-227 (2018) · Zbl 1383.65099
[63] A. Yokuş; H. Bulut, On the numerical investigations to the Cahn-Allen equation by using finite difference method, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9, 18-23 (2019)
[64] A. Yokus; D. Kaya, Numerical and exact solutions for time fractional Burgers equation, J. Nonlinear Sci. Appl., 10, 3419-3428 (2017) · Zbl 1412.65098
[65] A. Yokus, B. Kuzu and U. Demiroğlu, Investigation of solitary wave solutions for the \((3+1)\)-dimensional Zakharov-Kuznetsov equation, Internat. J. Modern Phys. B, 33 (2019), 1950350, 19 pp.
[66] A. Yokus, T. A. Sulaiman and H. Bulut, On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation, Optical and Quantum Electronics, 50 (2018), 31.
[67] C.-G. Zhu; W.-S. Kang, Numerical solution of Burgers-Fisher equation by cubic B-Spline quasi-interpolation, Appl. Math. Comput., 216, 2679-2686 (2010) · Zbl 1193.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.