×

Defective models induced by gamma frailty term for survival data with cured fraction. (English) Zbl 1516.62592

Summary: In this paper, we propose a defective model induced by a frailty term for modeling the proportion of cured. Unlike most of the cure rate models, defective models have advantage of modeling the cure rate without adding any extra parameter in model. The introduction of an unobserved heterogeneity among individuals has bring advantages for the estimated model. The influence of unobserved covariates is incorporated using a proportional hazard model. The frailty term assumed to follow a gamma distribution is introduced on the hazard rate to control the unobservable heterogeneity of the patients. We assume that the baseline distribution follows a Gompertz and inverse Gaussian defective distributions. Thus we propose and discuss two defective distributions: the defective gamma-Gompertz and gamma-inverse Gaussian regression models. Simulation studies are performed to verify the asymptotic properties of the maximum likelihood estimator. Lastly, in order to illustrate the proposed model, we present three applications in real data sets, in which one of them we are using for the first time, related to a study about breast cancer in the A.C.Camargo Cancer Center, São Paulo, Brazil.

MSC:

62-XX Statistics

Software:

R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aalen, O. O., Modelling heterogeneity in survival analysis by the compound Poisson distribution, Ann. Appl. Probab., 4, 951-972 (1992) · Zbl 0762.62031 · doi:10.1214/aoap/1177005583
[2] Aalen, O. O.; Gjessing, H. K., Understanding the shape of the hazard rate: A process point of view (with comments and a rejoinder by the authors), Stat. Sci., 16, 1-22 (2001) · Zbl 1059.62613
[3] Andersen, P.; Borgan, O.; Gill, R.; Keiding, N., Statistical models based on counting processes (1993), Springer: Springer, NY · Zbl 0769.62061
[4] Balka, J.; Desmond, A. F.; McNicholas, P. D., Review and implementation of cure models based on first hitting times for wiener processes, Lifetime Data Anal., 15, 147-176 (2009) · Zbl 1282.62228 · doi:10.1007/s10985-008-9108-y
[5] Balka, J.; Desmond, A. F.; McNicholas, P. D., Bayesian and likelihood inference for cure rates based on defective inverse Gaussian regression models, J. Appl. Stat., 38, 127-144 (2011) · Zbl 1511.62309 · doi:10.1080/02664760903301127
[6] Berkson, J.; Gage, R. P., Survival curve for cancer patients following treatment, J. Am. Stat. Assoc., 47, 501-515 (1952) · doi:10.1080/01621459.1952.10501187
[7] Boag, J. W., Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B Methodol., 11, 15-53 (1949) · Zbl 0034.08001
[8] Borges, P., Em algorithm-based likelihood estimation for a generalized Gompertz regression model in presence of survival data with long-term survivors: An application to uterine cervical cancer data, J. Stat. Comput. Simul., 87, 1712-1722 (2017) · Zbl 07192025 · doi:10.1080/00949655.2017.1281927
[9] Calsavara, V. F.; Rodrigues, A. S.; Tomazella, V. L.D.; de Castro, M., Frailty models power variance function with cure fraction and latent risk factors negative binomial, Comm. Statist. Theory Methods, 46, 9763-9776 (2017) · Zbl 1380.62249 · doi:10.1080/03610926.2016.1218029
[10] Calsavara, V. F.; Tomazella, V. L.D.; Fogo, J. C., Family generalized modified Weibull for analyzing long-term survival data, Adv. Appl. Stat., 23, 59-76 (2011) · Zbl 06042828
[11] Calsavara, V. F.; Tomazella, V. L.; Fogo, J. C., The effect of frailty term in the standard mixture model, Chil. J. Stat., 4, 95-109 (2013) · Zbl 1449.62214
[12] Cantor, A. B.; Shuster, J. J., Parametric versus non-parametric methods for estimating cure rates based on censored survival data, Stat. Med., 11, 931-937 (1992) · doi:10.1002/sim.4780110710
[13] Chen, M. H.; Ibrahim, J. G.; Sinha, D., A new Bayesian model for survival data with a surviving fraction, J. Am. Stat. Assoc., 94, 909-919 (1999) · Zbl 0996.62019 · doi:10.1080/01621459.1999.10474196
[14] Clayton, D. G., A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151 (1978) · Zbl 0394.92021 · doi:10.1093/biomet/65.1.141
[15] dos Santos, M. R.; Achcar, J. A.; Martinez, E. Z., Bayesian and maximum likelihood inference for the defective Gompertz cure rate model with covariates, Ciên. Nat., 39, 244 (2017)
[16] Elbers, C.; Ridder, G., True and spurious duration dependence: The identifiability of the proportional hazard model, Rev. Econ. Stud., 49, 403-409 (1982) · Zbl 0512.62113 · doi:10.2307/2297364
[17] Gieser, P. W.; Chang, M. N.; Rao, P. V.; Shuster, J. J.; Pullen, J., Modelling cure rates using the Gompertz model with covariate information, Stat. Med., 17, 831-839 (1998) · doi:10.1002/(SICI)1097-0258(19980430)17:8<831::AID-SIM790>3.0.CO;2-G
[18] Haybittle, J. L., The estimation of the proportion of patients cured after treatment for cancer of the breast, Br. J. Radiol., 32, 725-733 (1959) · doi:10.1259/0007-1285-32-383-725
[19] Hougaard, P., A class of multivanate failure time distributions, Biometrika, 73, 671-678 (1986) · Zbl 0613.62121
[20] Hougaard, P., Survival models for heterogeneous populations derived from stable distributions, Biometrika, 73, 387-396 (1986) · Zbl 0603.62015 · doi:10.1093/biomet/73.2.387
[21] Hougaard, P., Modelling heterogeneity in survival data, J. Appl. Probab., 28, 695-701 (1991) · Zbl 0736.62092 · doi:10.2307/3214503
[22] Hougaard, P., Frailty models for survival data, Lifetime. Data. Anal., 1, 255-273 (1995) · doi:10.1007/BF00985760
[23] Hougaard, P.; Myglegaard, P.; Borch-Johnsen, K., Heterogeneity models of disease susceptibility, with application to diabetic nephropathy, Biometrics, 50, 1178-1188 (1994) · doi:10.2307/2533456
[24] Ibrahim, J. G.; Chen, M. H.; Sinha, D., Bayesian semiparametric models for survival data with a cure fraction, Biometrics, 57, 383-388 (2001) · Zbl 1209.62036 · doi:10.1111/j.0006-341X.2001.00383.x
[25] Ibrahim, J. G.; Chen, M. H.; Sinha, D., Bayesian Survival Analysis (2005), Wiley Online Library: Wiley Online Library, New York
[26] Kettunen, J., et al., Transition intensities from unemployment, Tech. Rep. 1991.
[27] Laurie, J. A.; Moertel, C. G.; Fleming, T. R.; Wieand, H. S.; Leigh, J. E.; Rubin, J.; McCormack, G. W.; Gerstner, J. B.; Krook, J. E.; Malliard, J., Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil. the north central cancer treatment group and the Mayo Clinic., J. Clin. Oncol., 7, 1447-1456 (1989) · doi:10.1200/JCO.1989.7.10.1447
[28] Longini Jr, I. M.; Halloran, M. E., A frailty mixture model for estimating vaccine efficacy, Appl. Stat., 45, 165-173 (1996) · Zbl 0875.62571 · doi:10.2307/2986152
[29] Missov, T.I., Analytic expressions for life expectancy in gamma-Gompertz mortality settings, Tech. Rep. Max Planck Institute for Demographic Research, Rostock, Germany, 2010.
[30] Missov, T. I., Gamma-Gompertz life expectancy at birth, Demogr. Res., 28, 259-270 (2013) · doi:10.4054/DemRes.2013.28.9
[31] Oakes, D., A model for association in bivariate survival data, J. R. Stat. Soc. Ser. B Methodol., 44, 414-422 (1982) · Zbl 0503.62035
[32] Peng, Y.; Taylor, J. M.; Yu, B., A marginal regression model for multivariate failure time data with a surviving fraction, Lifetime Data Anal., 13, 351-369 (2007) · Zbl 1331.62434 · doi:10.1007/s10985-007-9042-4
[33] Price, D. L.; Manatunga, A. K., Modelling survival data with a cured fraction using frailty models, Stat. Med., 20, 1515-1527 (2001) · doi:10.1002/sim.687
[34] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/, 2016.
[35] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F., Two new defective distributions based on the Marshall-Olkin extension, Lifetime Data Anal., 22, 1-25 (2015)
[36] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F., A new class of defective models based on the Marshall-Olkin family of distributions for cure rate modeling, Comput. Stat. Data Anal., 107, 48-63 (2017) · Zbl 1466.62184 · doi:10.1016/j.csda.2016.10.001
[37] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F.; Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat. Meth. Med. Res., 26, 1-15 (2015) · Zbl 1487.62080 · doi:10.1016/j.stamet.2015.03.001
[38] Rocha, R.; Tomazella, V.; Louzada, F., Inferência clássica e Bayesiana para o modelo de frção de cura Gompertz defeituoso, Revis Brasil Biomet, 32, 104-114 (2014)
[39] Rodrigues, J.; Cancho, V. G.; de Castro, M.; Louzada-Neto, F., On the unification of long-term survival models, Statist. Probab. Lett., 79, 753-759 (2009) · Zbl 1349.62485 · doi:10.1016/j.spl.2008.10.029
[40] Sinha, D.; Dey, D. K., Semiparametric Bayesian analysis of survival data, J. Am. Stat. Assoc., 92, 1195-1212 (1997) · Zbl 1067.62520 · doi:10.1080/01621459.1997.10474077
[41] Tomazella, V.L.D., Modelagem de dados de eventos recorrentes via processo de Poisson com termo de fragilidade, Ph.D. diss. Instituto de Ciências Matemáticas e de Computação, 2003.
[42] Vaupel, J. W.; Manton, K. G.; Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454 (1979) · doi:10.2307/2061224
[43] Whitmore, G. A., An inverse Gaussian model for labour turnover, J. Roy. Statist. Soc. Ser. A, 142, 468-478 (1979) · doi:10.2307/2982553
[44] Wienke, A., Frailty models (2003), Statistics Reference Online: Statistics Reference Online, Wiley StatsRef
[45] Yakovlev, A. Y.; Tsodikov, A. D., Stochastic models of tumor latency and their biostatistical applications, 1 (1996), World Scientific: World Scientific, River Edge, NJ · Zbl 0919.92024
[46] Yau, K. K.; Ng, A. S., Long-term survivor mixture model with random effects: Application to a multi-centre clinical trial of carcinoma, Stat. Med., 20, 1591-1607 (2001) · doi:10.1002/sim.932
[47] Yu, B.; Peng, Y., Mixture cure models for multivariate survival data, Comput. Stat. Data. Anal., 52, 1524-1532 (2008) · Zbl 1452.62859 · doi:10.1016/j.csda.2007.04.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.