×

zbMATH — the first resource for mathematics

The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements. (English) Zbl 0748.76082
Summary: In this paper the functions of the Péclet number that appear in the intrinsic time of the streamline upwind/Petrov-Galerkin formulation are analyzed for quadratic elements. Some related issues such as the computation of the characteristic element length and the introduction of source terms in the one-dimensional model problem are also addressed.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R.; Brooks, A., A multi-dimensional upwind scheme with no crosswind diffusion, () · Zbl 0423.76067
[2] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods, with discontinuous weighting functions: applications to the streamline upwind procedure, (), 46-65
[3] Hughes, T.J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, () · Zbl 0638.76080
[4] Babuška, I., Errors bounds for finite element method, Numer. math., 16, 322-333, (1971) · Zbl 0214.42001
[5] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, ser. rouge anal. numer., 8, R-2, (1976)
[6] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations, (1986), Springer Berlin · Zbl 0396.65070
[7] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[8] Le Tallec, P.; Ruas, V., On the convergence of the bilinear-velocity constant-pressure finite element method in viscous flow, Comput. methods appl. mech. engrg., 54, 235-243, (1986) · Zbl 0622.76026
[9] Codina, R.; Oñate, E.; Cervera, M.; Eckstein, K., Una formulación de Petrov-Galerkin para el análisis de problemas de convección-difusión con elementos finitos cuadráticos, ()
[10] Galeão, A.C.; Dutra do Carmo, E.G., A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[11] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. methods appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[12] C. Johnson, A Szepessy and P. Hansbo, On the convergence of shock-capturing streamline-diffusion finite element methods for hyperbolic conservation laws, Math. Comput. (to appear). · Zbl 0685.65086
[13] Johnson, C.; Nävert, U.; Pitkaranta, J., Finite element methods for linear hyperbolic problems, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[14] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[15] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[16] Heinrich, J.C.; Zienkiewicz, O.C., The finite element method and ‘upwinding’ techniques in the numerical solution of convection dominated flow problems, () · Zbl 0436.76062
[17] Christie, I.; Mitchell, A.R., Upwinding of high order Galerkin methods in conduction-convection problems, Internat. J. numer. methods engrg., 14, 1764-1771, (1978) · Zbl 0391.65034
[18] Heinrich, J.C., On quadratic elements in finite element solutions of steady-state convection-diffusion equations, Internat. J. numer. methods engrg, 15, 1041-1052, (1980) · Zbl 0445.76061
[19] Shakib, F., Finite element analysis the compressible Euler and Navier-Stokes equations, ()
[20] Johnson, C., The streamline diffusion finite element method for compressible and incompressible fluid flow, Von karman lecture series, IV: computational fluid dynamics, (March 1990)
[21] Yu, C.C.; Heinrich, J.C., Petrov-Galerkin methods for the time-dependent convective transport equation, Internat. J. numer. methods engrg., 23, 883-901, (1986) · Zbl 0631.65109
[22] Yu, C.C.; Heinrich, J.C., Petrov-Galerkin methods for multidimensional time-dependent convective transport equation, Internat. J. numer. methods engrg., 24, 2201-2215, (1987) · Zbl 0636.65117
[23] Nävert, U., A finite element method for convection-diffusion problems, ()
[24] Isaacson, E.; Keller, H.E., Analysis of numerical methods, (1966), Wiley New York · Zbl 0168.13101
[25] Mallet, M., A finite element method for computational fluid dynamics, ()
[26] Tezduyar, T.E.; Ganjoo, D.K., Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems, Comput. methods appl. mech. engrg., 59, 49-71, (1986) · Zbl 0604.76077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.