×

QMR: A quasi-minimal residual method for non-Hermitian linear systems. (English) Zbl 0754.65034

The basic Lanczos biorthogonal method [cf. C. Lanczos, J. Res. Natl. Bur. Stand. 49, 33-53 (1952; MR 14.501)] for the solution of the linear system \(Ax=b\), \(A\) non-Hermitian, generates sequences \(\{v_ 1,v_ 2,\dots,v_ n\}\) and \(\{w_ 1,w_ 2,\dots,w_ n\}\), \(n=1,2,\dots,\) from: \(v_{j+1}=Av_ j-\alpha_ jv_ j-\beta_ jv_{j-1}\) and \(w_{j+1}=A^ Tv_ j-\alpha_ j w_ j-\gamma_ jw_{j-1}\) where the scalar coefficients are chosen to satisfy the biorthogonality condition \(w^ T_ kv_ l=d_ k\delta_{kl}\). The biconjugate gradient (BCG) method is a variant of the Lanczos’ method. Note that if \(w^ T_{n+1}v_{n+1}=0\), the above process must be terminated to prevent division by zero at the next step. So-called look- ahead variants of BCG attempt to overcome this difficulty [cf B. N. Parlett, D. R. Taylor, Z. A. Liu, Math. Comput. 44, 105-124 (1985; Zbl 0564.65022)].
This paper presents the quasi-minimal residual (QMR) approach, a generalization of BCG which overcomes the tendency to numerical instability. It incorporates the \(n\)th iteration of the look-ahead BCG, starting with \(v_ 1=r_ 0/\| r_ 0\|\), where \(r_ 0\) is the residual \(r_ 0=b-Ax_ 0\) of \(x_ 0\), an initial guess to the solution of the linear system. Implementation details are presented, together with further properties and an error bound.
In conclusion, results of extensive numerical experiments with QMR and other iterative methods mentioned in the paper are presented.

MSC:

65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs

Citations:

Zbl 0564.65022
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Duff, I.S., Grimes, R.G., Lewis, J.G. (1989): Sparse matrix test problems. ACM Trans. Math. Softw.15, 1-14 · Zbl 0667.65040
[2] Faber, V., Manteuffel, T. (1984): Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal.21, 352-362 · Zbl 0546.65010
[3] Fischer, B., Freund, R.W. (1990): On the constrained Chebyshev approximation problem on ellipses. J. Approx. Theory62, 297-315 · Zbl 0728.41023
[4] Fletcher, R. (1976): Conjugate gradient methods for indefinite systems. In: G. A. Watson, ed., Numerical Analysis Dundee 1975, pp. 73-89. Lecture Notes in Mathematics 506. Springer, Berlin Heidelberg New York
[5] Freund, R.W. (1989): Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices. Technical Report 89.54, RIACS, NASA Ames Research Center
[6] Freund, R.W., Gutknecht, M.H., Nachtigal, N.M. (1990): An implementation of the lookahead Lanczos algorithm for non-Hermitian matrices, Part. I. Technical Report 90.45, RIACS, NASA Ames Research Center
[7] Freund, R.W., Nachtigal, N.M. (1990): An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, Part II. Technical Report 90.46, RIACS, NASA Ames Research Center · Zbl 0770.65022
[8] Golub, G.H., Van Loan, C.F. (1983): Matrix computations. The Johns Hopkins University Press, Baltimore · Zbl 0559.65011
[9] Gutknecht, M.H. (1990): A completed theory of the unsymmetric Lanczos process and related algorithms, Part II. IPS Research Report No. 90-16, Z?rich
[10] Gutknecht, M.H. (1990): A completed theory of the unsymmetric Lanczos process and related algorithms, Part II. IPS Research Report No. 90-16, Z?rich
[11] Hestenes, M.R., Stiefel, E. (1952): Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand.49, 409-436 · Zbl 0048.09901
[12] Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand.45, 255-282
[13] Lanczos, C. (1952): Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand.49, 33-53
[14] Manteuffel, T.A. (1977): The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.28, 307-327 · Zbl 0361.65024
[15] Meijerink, J.A., van der Vorst, H.A. (1977): An interative solution for linear systems of which the coefficient matrix is a symmetricM-matrix. Math. Comp.31, 148-162 · Zbl 0349.65020
[16] Paige, C.C., Saunders, M.A. (1975): Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal.12, 617-629 · Zbl 0319.65025
[17] Parlett, B.N. (1990): Reduction to tridiagonal form and minimal realizations. Preprint, Berkeley · Zbl 0754.65040
[18] Parlett, B.N., Taylor, D.R., Liu, Z.A. (1985): A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp.44, 105-124 · Zbl 0564.65022
[19] Saad, Y. (1982): The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal.19, 485-506 · Zbl 0483.65022
[20] Saad, Y. (1990): SPARSKIT: a basic tool kit for sparse matrix computations. Technical Report 90.20, RIACS, NASA Ames Research Center
[21] Saad, Y., Schultz, M.H. (1986): GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.7, 856-869 · Zbl 0599.65018
[22] Sonneveld, P. (1989): CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.10, 36-52 · Zbl 0666.65029
[23] Taylor, D.R. (1982): Analysis of the look ahead Lanczos algorithm. Ph.D. Dissertation, University of California Berkeley
[24] van der Vorst, H.A. (1990): Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. Preprint, Utrecht · Zbl 0761.65023
[25] Wilkinson, J.H. (1965): The Algebraic Eigenvalue Problem. Oxford University Press, Oxford · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.