zbMATH — the first resource for mathematics

A note on the Sobolev inequality. (English) Zbl 0755.46014
Let \(M\) be the set of all functions \(\varphi\in W_ 0^{1,2}\) for which equality holds in the Sobolev “inequality”, i.e., \(\|\nabla\varphi\|_{L_ 2}=S\|\varphi\|_{L_{2N/(N- 2)}}\) (\(N\geq 3\), \(S=\) best Sobolev constant). The authors show then that the ratio \[ R(\varphi)={\|\nabla\varphi\|_{L_ 2}-S\|\varphi \|_{L_{2N/(N-2)}} \over \text{dist}(\varphi,M)} \qquad (\varphi\in W_ 0^{1,2}) \] is bounded away from zero.

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] Brezis, H; Lieb, E, Sobolev inequalities with remainder terms, J. funct. anal., 62, 73-86, (1985) · Zbl 0577.46031
[2] Brezis, H; Nirenberg, L, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. pure appl. math., 36, 437-477, (1983) · Zbl 0541.35029
[3] Egnell, H; Pacella, F; Tricarico, M, Some remarks on Sobolev inequalities, Nonlinear anal. T.M.A., 13, 671-681, (1989) · Zbl 0687.46018
[4] Lions, P.L; Lions, P.L, The concentration-compactness principle in the calculus of variations: the limiting case (parts 1 and 2), Riv. mat. iberoamericana, Riv. mat. iberoamericana, 1, 45-121, (1985) · Zbl 0601.49005
[5] Struwe, M, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 511-517, (1984) · Zbl 0535.35025
[6] Talenti, G, Best constant in Sobolev inequalities, Ann. mat. pura appl., 110, 353-372, (1976) · Zbl 0353.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.