zbMATH — the first resource for mathematics

Moduloïds and pseudomodules. I: Dimension theory. (English) Zbl 0757.06008
The author selects the concept of a moduloïd over a dioïd to have a very weak independence property, together with the assumption that the dioïd of scalars is completely ordered, that perfectly fits the requirements needed for a dimension theory. Moreover, the concept of independence adopted is closely related to the concept of irreducibility in a lattice, and thus shows the links between Discrete Event Dynamical Systems, lattice theory, and classical linear algebra. The author also shows that, unlike in classical vector spaces, the dimension alone does not characterize the structure. Through various examples, some intuition for complementary investigations on the additional algebraic invariants needed for the classification problems is also provided.
In Section 2. “Basic Definitions”, the author first gives a motivating example, and then states the basic definitions and elementary properties which will be needed. Some examples are also provided. In Section 3. “Moduloïds and weak bases”, the author states and proves the fundamental theorems related to bases and dimension for moduloïds. The corresponding results for pseudomodules are given in Section 4. “The case of pseudomodules. Bases and dimension”. Some additional remarks and examples then conclude the paper in Section 5. “Concluding remarks and open problems”.
Reviewer: Y.Kuo (Knoxville)

06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06F25 Ordered rings, algebras, modules
15A99 Basic linear algebra
Full Text: DOI
[1] Birkhoff, G., Lattice theory, Vol. XXV, (1967), AMS Coll. Pub Providence, RI · Zbl 0126.03801
[2] Butkovič, P.; Hevery, F., A condition for the strong regularity of matrices in the minimax algebra, Discrete appl. math., 11, 209-222, (1985) · Zbl 0602.90136
[3] Cohen, G.; Dubois, D.; Quadrat, J.P.; Viot, M., A linear system theoretic view of discrete-event processe and its use for performance evaluation in manufacturing, IEEE trans. automat. control, C-30, 210-220, (1985) · Zbl 0557.93005
[4] Cohen, G.; Moller, P.; Quadrat, J.P.; Viot, M., Une théorie linéaire des systèmes à événements discrets, Rapport de recherche INRIA #362, (1985), Le Chesnay
[5] Cunninghame-Green, R.A., Minimax algebra, ()
[6] Cunninghame-Green, R.A., Using fields for semiring computations, (), 55-74
[7] Gondran, M.; Minoux, M., Linear algebra of dioïds: a survey of recent results, (), 147-164 · Zbl 0568.08001
[8] Gondran, M.; Minoux, M., Valeurs propres et vecteurs propres dans LES dioïdes et leur interprétation en théorie des graphes, EDF bulletin de la direction des études et recherches, Série C-math. info. #2, 25-41, (1977)
[9] Hennessy, M.C.B.; Plotkin, G.D., Full abstraction for a simple parallel programming language, Lecture notes in comput. sci., 74, 108-120, (1979) · Zbl 0457.68006
[10] Main, M.G., Free constructions of powerdomains, Lecture notes in comput. sci., 239, 162-183, (1985)
[11] Moller, P., Théorème de Cayley-Hamilton dans LES dioïdes et applications à l’étude des systèmes à événements discrets, Lecture notes in control and inform. sci., 83, (1986)
[12] Moller, P., Notions de rang dans LES dioïdes vectoriels, Comptes rendus de la conférence “algèbres exotiques et systèmes à événements discrets”, (juin 1987), CNET 3-4
[13] Olsder, G.J.; Roos, C., Cramer and cayley – hamilton in the MAX-algebra, Linear algebra appl., 101, 87-108, (1988) · Zbl 0659.15012
[14] Plotkin, G.D., A powerdomain construction, SIAM J. comput., 5, 452-487, (1976) · Zbl 0355.68015
[15] E. Wagneur, The classification problem for moduloïds of finite type, 2, Classification of simple pseudomodules, Cahier du GERAD G-88-38.
[16] Zimmermann, U., Linear and combinatorial optimization in ordered algebraic structures, () · Zbl 0466.90045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.