×

A Petrov-Galerkin technique for the solution of transonic and supersonic flows. (English) Zbl 0757.76024

A streamline-upwind Petrov-Galerkin formulation for the finite-element solution of transonic and supersonic flows is described. The implementation and use of the method are considered, and some results are given.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76H05 Transonic flows
76J20 Supersonic flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Donéa, J., A Taylor-Galerkin method for convective transport problems, Internat. J. Numer. Methods Engrg., 20, 199-259 (1984)
[2] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Engrg., 45, 217-284 (1984) · Zbl 0542.76093
[3] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element method for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[4] Hughes, T. J.R.; Mallet, M.; Mizukami, M., A new finite element method for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[5] Devloo, P.; Oden, J. T.; Strouboulis, T., Implementation of an adaptive refinement technique for the SUPG algorithm, Comput. Methods Appl. Mech. Engrg., 61, 339-358 (1987) · Zbl 0596.73066
[6] Hughes, T. J.R.; Mallet, M., A new finite element method for computational fluid dynamics: III. The generalized streamline operator for multidimensional advection-diffusion systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[7] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[8] Tadmor, E., Skew-selfadjoint forms for systems of conservation law, J. Math. Anal. Appl., 103, 428-442 (1984) · Zbl 0599.35102
[9] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element method for computational fluid dynamcis: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54, 223-234 (1986) · Zbl 0572.76068
[10] Hughes, T. J.R.; Mallet, M., A new finite element method for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[12] Davis, S. F., A rotationally biased upwind difference scheme for the Euler equations, J. Comput. Phys., 56, 65-92 (1984) · Zbl 0557.76067
[13] Pullimam, T. H.; Barton, J. T., Euler computations of AGARD Working Group 07 Airfoil Test Cases, AIAA Paper 85-0018 (1985)
[14] Oden, J. T.; Strouboulis, T.; Devloo, P., Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes, Comput. Methods Appl. Mech. Engrg., 59, 327-362 (1986) · Zbl 0593.76080
[15] Koeck, C., Computation of three-dimensional flow using the Euler equations and a multiple-grid scheme, Internat. J. Numer. Methods Fluids, 5, 483-500 (1985) · Zbl 0593.76067
[16] Engelman, M. S.; Sani, R. L.; Gresho, P. M., The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow, Internat. J. Numer. Methods Fluids, 2, 225-238 (1982) · Zbl 0501.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.