Lele, Sanjiva K. Compact finite difference schemes with spectral-like resolution. (English) Zbl 0759.65006 J. Comput. Phys. 103, No. 1, 16-42 (1992). Finite difference schemes providing an improved representation of a range of scales ( spectral-like resolution) in the evaluation of derivatives are presented. The errors are considered from the viewpoint of different scales.[This may partly compensate for the fact that the consideration of the order of the truncation error is not sufficient for the evaluation of the quality of difference schemes when differential equations are to be solved.] On the other hand, stability is not included in the discussion of applications to fluid mechanics. Reviewer: D.Braess (Bochum) Cited in 8 ReviewsCited in 1397 Documents MSC: 65D25 Numerical differentiation 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs Keywords:numerical differentiation; Finite difference scheme; spectral-like resolution; evaluation of derivatives; order of the truncation error Software:symrcm PDF BibTeX XML Cite \textit{S. K. Lele}, J. Comput. Phys. 103, No. 1, 16--42 (1992; Zbl 0759.65006) Full Text: DOI OpenURL References: [1] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods (1977), SIAM: SIAM Philadelphia · Zbl 0412.65058 [2] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0636.76009 [3] Rogallo, R.; Moin, P., Annu. Rev. Fluid Mech., 16, 99 (1984) [4] Kim, J.; Moin, P.; Moser, R. D., J. Fluid Mech., 177, 133 (1987) [5] Spalart, P., J. Fluid Mech., 187, 61 (1988) [6] Rai, M. M.; Moin, P., AIAA paper, AIAA-89-0369, Reno (1989) [7] Patera, A. T., J. Comput. Phys., 54, 468 (1984) [8] Ghaddar, N. K.; Kariadakis, G. E.; Patera, A. T., Numer. Heat Transfer, 9, 277 (1986) [9] Karniadakis, G. E., Appl. Numer. Math., 5 (1989) [10] Swartz, B.; Wendroff, B., (Watson, G. A., Lecture Notes in Mathematics. Lecture Notes in Mathematics, Dundee, 1973. Lecture Notes in Mathematics. Lecture Notes in Mathematics, Dundee, 1973, Proceedings, Conference on the Numerical Solution of Differential Equations, Vol. 363 (1974), Springer-Verlag: Springer-Verlag New York/Berlin), 153 [11] Swartz, B., (de Boor, C., Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press: Academic Press New York), 279 [12] Swartz, B.; Wendroff, B., SIAM J. Numer. Anal., 11, 979 (1974) [13] Swartz, B., (Vichnevetsky, R., Advances in Computer Methods for Partial Differential Equations (1975), AICA: AICA Ghent, Belgium), 17 [14] Kreiss, H. O.; Oliger, J., Tellus, 3, 99 (1972) [15] Kreiss, H. O.; Orszag, S. A.; Israeli, M., Annu. Rev. Fluid Mech., 6, 281 (1974) [16] Hirsh, R. S., J. Comput. Phys., 19, 90 (1975) [17] Adam, Y., J. Comput. Phys., 24, 10 (1977) [18] Mansour, N. N.; Moin, P.; Reynolds, W. C.; Ferziger, J. H., (Turbulent Shear Flows I (1977), Springer-Verlag: Springer-Verlag New York/Berlin), 386 [19] Rubin, S. G.; Khosla, P. K., J. Comput. Phys., 24, 217 (1977) [20] Adam, Y., Comput. Math. Appl., 1, 393 (1975) [21] Goedheer, W. J.; Potters, J. H.H. M., J. Comput. Phys., 61, 269 (1985) [22] Collatz, L., The Numerical Treatment of Differential Equations, ((1966), Springer-Verlag: Springer-Verlag New York), 538 [23] Kopal, Z., Numerical Analysis, ((1961), Wiley: Wiley New York), 552 [24] Vichnevetsky, R.; Bowies, J. B., Fourier Analysis of Numerical Approximations of Hyperbolic Equations (1982), SIAM: SIAM Philadelphia [25] Roberts, K. V.; Weiss, N. O., Math. Comput., 20, 272 (1866) [26] Fromm, J. E., Phys. Fluids, Suppl II, II-12 (1969) [27] Orszag, S. A., J. Fluid Mech., 49, 75 (1971) [28] Orszag, S. A., Stud. Appl. Math., 49, 395 (1971) [29] Trapp, J. A.; Ramshaw, J. D., J. Comput. Phys., 20, 238 (1976) [30] Vichnevetsky, R., Math. Comput. Simul., 21, 170 (1979) [31] Herring, J. R.; Orszag, S. A.; Kraichnan, R. H.; Fox, D. G., J. Fluid Mech., 66, 417 (1974) [32] Rogallo, R., NASA TM-81315 (1981) [34] Horiuti, K., J. Comput. Phys., 71, 343 (1987) [35] Kerr, R. M., J. Fluid Mech., 153, 31 (1985) [36] Lele, S. K., AIAA paper, AIAA-89-0374, Reno (1989) [37] Sandham, N. D.; Reynolds, W. C., AIAA paper, AIAA-89-0371, Reno (1989) [38] Strikwerda, J., J. Comput. Phys., 34, 94 (1980) [39] Warming, R. F.; Beam, R. M., (de Vahl Davis, G.; Fletcher, C., Proceedings, International Symposium on Computational Fluid Dynamics. Proceedings, International Symposium on Computational Fluid Dynamics, Sydney, Australia (1988), North-Holland: North-Holland Amsterdam). (Lecture Notes in Physics, Vol. 264 (1986)), 647, New York/Berlin [40] Thompson, K., J. Comput. Phys., 68, 1 (1987) [41] Poinsot, T.; Lele, S. K., (J. Comput. Phys.. J. Comput. Phys., CTR Manuscript 102 (1992), Center for Turbulence Research, Stanford University). (J. Comput. Phys.. J. Comput. Phys., CTR Manuscript 102 (1989), Center for Turbulence Research, Stanford University), to appear [42] Buell, J. C., (Proceedings, Tenth Australasian Fluid Mechanic Conference. Proceedings, Tenth Australasian Fluid Mechanic Conference, Melbourne (1989)) [43] Buell, J. C.; Huerre, P., (Proceedings, 1988 Summer Program. Proceedings, 1988 Summer Program, Report CTR-S88 (1988), Center for Turbulence Research, Stanford University), 19 [44] Papamoschou, D.; Roshko, A., J. Fluid Mech., 197, 453 (1988) [45] Lagerstrom, P. A., (Moore, F. K., Theory of Laminar Flows, High Speed Aerodynamics and Jet Propulsion, 4 (1964), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 453 [46] George, A.; Liu, J. W-H., Computer Solution of Large Sparse Positive Definite Systems, ((1981), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ), 51 [47] Brigham, E. O., The Fast Fourier Transform, ((1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ), 194 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.