×

Adaptive streamline diffusion methods for compressible flow using conservation variables. (English) Zbl 0760.76046

The main purpose of this note is to present some computational results for adaptive stream diffusion (SD) methods in conservation variables applied to the non-stationary Euler equations for compressible flow in two space dimensions. In this case a posteriori error estimates have not yet been proved and it is not known how to design reliable and efficient adaptive algorithms. We test different algorithms which are natural extensions of the ones we have developed for SD-methods for scalar convection-diffusion problems [K. Eriksson and the second author, Adaptive streamline diffusion finite element methods for convection- diffusion problems, Univ. of Goeteborg, Dep. of Math. (1990)].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for convection-diffusion problems, (Technical report (1990), Department of Mathematics, Chalmers University of Technology) · Zbl 0795.65074
[3] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 84, 175-192 (1990) · Zbl 0716.76048
[4] Hughes, T. J.R.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows. Finite Element Methods for Convection Dominated Flows, AMD, Vol. 34 (1979), ASME: ASME New York) · Zbl 0423.76067
[5] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[6] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54, 223-234 (1986) · Zbl 0572.76068
[7] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[8] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The general streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[9] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[10] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi Condition: A stable Petrov-Galerkin Formulation of the Stokes-problem accomodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[11] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M.; Johan, Z.; Shakib, F., The Galerkin/least-squares method for advective-diffusive equations, (Tezduyar, T. E.; Hughes, T. J.R., Recent Developments in Computational Fluid Dynamics. Recent Developments in Computational Fluid Dynamics, AMD, Vol. 95 (1988), ASME: ASME Chicago)
[12] Johnson, C.; Nävert, U., An analysis of some finite element methods for advection-diffusion problems, (Axelsson, O.; Frank, L. S.; van der Sluis, A., Analytical and Numerical Approaches to Asymptotic Problems in Analysis (1981), North-Holland: North-Holland Amsterdam) · Zbl 0455.76081
[13] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[14] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18 (1986) · Zbl 0609.76020
[15] Johnson, C.; Szepessy, A., On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp., 49, 427-444 (1987) · Zbl 0634.65075
[16] Johnson, C.; Szepessy, A., On the convergence of streamline diffusion finite element methods for hyperbolic conservation laws, (Tezduyar, T. E.; Hughes, T. J.R., Numerical Methods for Compressible Flow—Finite Difference, Finite Element and Volume Techniques. Numerical Methods for Compressible Flow—Finite Difference, Finite Element and Volume Techniques, AMD, Vol. 78 (1986), ASME: ASME New York) · Zbl 0685.65086
[17] Johnson, C.; Szepessy, A., Shock-capturing streamline diffusion finite element methods for nonlinear conservation laws, (Tezduyar, T. E.; Hughes, T. J.R., Recent Developments in Computational Fluid Mechanics. Recent Developments in Computational Fluid Mechanics, AMD, Vol. 95 (1988), ASME: ASME New York) · Zbl 0685.65086
[18] Johnson, C.; Schatz, A. H.; Wahlbin, L. B., Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 47, 25-38 (July 1987)
[19] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp., 54, 82-107 (1990) · Zbl 0685.65086
[21] Shakib, F., Finite element analysis of the compressible Euler and Navier-Stokes equations, (Thesis (1988), Stanford University: Stanford University Stanford, CA)
[22] Szepessy, A., Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions, Math. Comp., 53, 510-527 (1989) · Zbl 0679.65072
[23] Szepessy, A., Convergence of the streamline diffusion finite element method for conservation laws, (Thesis (1989), Department of Mathematics, Chalmers University of Technology) · Zbl 0751.65061
[25] Babuska, I.; Rheinboldt, W. C., Reliable error estimation and mesh adaptation for the finite element method, (Computational Methods in Nonlinear Mechanics (1980), North-Holland: North-Holland New York), 67-108
[26] Löhner, R., Adaptive remeshing for transient problems, Comput. Methods Appl. Mech. Engrg., 75, 195-214 (1989) · Zbl 0689.68116
[27] Oden, J. T.; Strouboulis, T.; Devloo, Ph., Adaptive finite element methods for high speed compressible flows, Internat. J. Numer. Methods Fluids, 7, 1211-1218 (1987)
[28] Eriksson, K., Adaptive finite element methods for parabolic problems II: A priori error estimates in \(L_∞(L_2)\) and \(L_∞(L_∞)\), (Technical report (1988), Department of Mathematics, Chalmers University of Technology)
[29] Eriksson, K.; Johnson, C., An adaptive finite element method for linear elliptic problems, Math. Comp., 50, 361-383 (1988) · Zbl 0644.65080
[31] Eriksson, K.; Johnson, C., Error estimates and automatic time step control for non-linear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23 (1987) · Zbl 0618.65104
[33] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72, 449-466 (1987) · Zbl 0631.76085
[34] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.