zbMATH — the first resource for mathematics

Serre duality for rigid analytic spaces. (English) Zbl 0762.32016
From the abstract: “A duality theory for morphisms \(X\to Y\) of rigid analytic spaces over some nonarchimedean valued complete field \(K\) is developed. As one expects the paper is rather technical in nature and the results are not surprising”.

32P05 Non-Archimedean analysis (should also be assigned at least one other classification number from Section 32-XX describing the type of problem)
32C37 Duality theorems for analytic spaces
Full Text: DOI
[1] Bosch, S.; Güntzer, U.; Remmert, R., Non Archimedean analysis, Grundlehren math. wiss., 261, (1984), Springer Verlag Berlin · Zbl 0539.14017
[2] Bãnicã, C.; Stãnãsilã, O., Méthodes algébriques dans la théorie globale des espaces complexes, Vol. 2, (1966), Gauthier-Villars · Zbl 0349.32006
[3] Chiarellotto, B., Duality in rigid analysis, Lecture notes in math., 1454, 142-172, (1990) · Zbl 0737.32012
[4] Hartshorne, R., Residues and duality, Lecture notes in math., 20, (1966)
[5] Kiehl, R., Der endlichkeitsatz für eigentliche abbildungen in der nichtarchimedische funktionentheorie, Inventiones math., 2, 191-214, (1967) · Zbl 0202.20101
[6] Kiehl, R., Theorem A and theorem B in der nichtarchimedischen funktionentheorie, Inventiones math., 2, 256-273, (1967) · Zbl 0202.20201
[7] Lütkebohmert, W., Steinsche Räume in der nicht-archimedischen funktionentheorie, 2, (1973), Schriftreihe Math. Inst. Univ. Münster, Serie, Heft 6 · Zbl 0264.32010
[8] Lütkebohmert, W., Formal algebraic and rigid-analytic geometry, Math. ann., 286, 341-371, (1990) · Zbl 0716.32022
[9] Put M., van der, Cohomology on affinoid spaces, Compositio math., 45, 2, 165-198, (1982) · Zbl 0491.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.