Finite element approximation to two-dimensional sine-Gordon solitons. (English) Zbl 0762.65073

This is a well-grounded and exhaustive numerical investigation of the two-dimensional sine-Gordon equation undertaken in the framework of the finite element methodology. From technical point of view the authors use a semidiscrete Galerkin approach based on simple four-noded bilinear finite elements in combination with a generalized Newmark integration scheme. The paper does not contain the strong convergence proof, but comparisons with finite difference solutions exhibit a very good accuracy of the developed algorithm.
The solutions are presented for interaction of circular ring solitons, symmetric perturbation of static line solitons, superposition of two orthogonal solitons, line and elliptic solitons in an inhomogeneous medium etc. The text is concluded with a series of beautiful pictures that undoubtedly will fascinate every reader of this paper.
Reviewer: O.Titow (Berlin)


65Z05 Applications to the sciences
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI


[1] Kaup, D.J.; Newell, A.C., Solitons as particles, oscillators, and in slowly changing media: A singular perturbation theory, (), 413-446
[2] Whitham, G.B., Linear and nonlinear waves, (1974), Wiley New York · Zbl 0373.76001
[3] Lamb, G.L., Elements of soliton theory, (1980), Wiley New York · Zbl 0445.35001
[4] Drazin, P.G.; Johnson, R.S., Solitons: an introduction, (1989), Cambridge Univ. Press Cambridge · Zbl 0661.35001
[5] Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morris, H.C., Solitons and nonlinear wave equations, (1982), Academic Press London · Zbl 0496.35001
[6] Haken, H., Synergetics, an introduction, (1977), Springer Berlin · Zbl 0447.58032
[7] Haken, H., Advanced synergetics, (1983), Springer Berlin · Zbl 0521.93002
[8] Bishop, A., Pattern selection and low-dimensional chaos in systems of coupled nonlinear oscillators, ()
[9] Aceves, A.; Adachihara, H.; Jones, C.; Lerman, J.C.; McLaughlin, D.W.; Moloney, J.V.; Newell, A.C., Chaos and coherent structures in partial differential equations, Physica, 18D, 85-112, (1986) · Zbl 0596.58029
[10] Christiansen, P.L., Solitons and chaos in the sine-Gordon system, () · Zbl 0444.35068
[11] Bishop, A.R.; Lomdahl, P.S., Nonlinear dynamics in driven, damped sine-Gordon systems, Physica, 18D, 54-66, (1986) · Zbl 0605.35081
[12] Eilbeck, J.C.; Lomdahl, P.S.; Newell, A.C., Chaos in the inhomogeneously driven sine-Gordon equation, Phys. lett., 87A, 1-4, (1981)
[13] Bishop, A.R.; Fesser, K.; Lomdahl, P.S.; Trullinger, S.E., Influence of solitons in the initial state on chaos in the driven damped sine—gordon system, Physica, 7D, 259-279, (1983) · Zbl 1194.35344
[14] Bishop, A.R., Chaos and solitons in dissipative nonlinear systems, () · Zbl 1082.82529
[15] Christiansen, P.L.; Lomdahl, P.S., Numerical study of 2 + 1 dimensional sine—gordon equation, Physica, 2D, 482-491, (1981) · Zbl 1194.65122
[16] Christiansen, P.L.; Olsen, O.H., Ring shaped quasi-soliton solutions to the two- and three-dimensional sine—gordon equation, Physica scripta, 20, 531-538, (1979) · Zbl 1063.81529
[17] Zabusky, N.J.; Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. rev. lett., 15, 240-243, (1965) · Zbl 1201.35174
[18] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Method for solving the Korteweg-de Vries equation, Phys. rev. lett., 19, 1095-1097, (1967) · Zbl 1061.35520
[19] Argyris, J.; Haase, M., An Engineer’s guide to soliton phenomena: application of the finite element method, Comput. methods appl. mech. engrg., 61, 71-122, (1987) · Zbl 0624.76020
[20] Josephson, B.D., Nonlinear conduction in superconductors, () · Zbl 0103.23703
[21] Argyris, J.; Haase, M., Semidiscrete finite element methods applied to solitons, (), paper presented at the 1st WCCM, Austin, Texas · Zbl 0624.76020
[22] Argyris, J.; Mlejnek, H.P., ()
[23] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Sanz-Serna, J.M., Product approximation for non-linear problems in the finite element method, IMA J. numer. anal., 1, 253-266, (1981) · Zbl 0469.65072
[24] Newmark, N.M., (), 67-94
[25] Hughes, T.J.R.; Pister, K.S.; Taylor, R.L., Implicit-explicit finite elements in non-linear transient analysis, Comput. methods appl. mech. engrg., 17/18, 159-182, (1979) · Zbl 0413.73074
[26] Olsen, O.H., On the break-up of quasi-soliton solutions to the sine—gordon equation in one and more dimensions, Phys. lett., 74A, 18-20, (1979)
[27] Manakov, S.V.; Zakharov, V.E.; Bordag, L.A.; Its, A.R.; Matveen, V.B., Two dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. lett., 63A, 205-208, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.