Some interlacing properties of the Schur complement of a Hermitian matrix. (English) Zbl 0765.15007

The author presents the following result: — It is shown for a Hermitian matrix \(H\) with nonsingular principal submatrix \(A\), that the eigenvalues of the Moore-Penrose inverse of the Schur complement \((H/A)\) of \(A\) in \(H\) interlace the eigenvalues of the Moore-Penrose inverse of \(H\). Also, if \(H\) is semidefinite, then the eigenvalues of \((H/A)\) interlace the eigenvalues of \(H\).
Reviewer: S.Sridhar (Madras)


15A42 Inequalities involving eigenvalues and eigenvectors
15B57 Hermitian, skew-Hermitian, and related matrices
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI


[1] Burns, F.; Carlson, D.; Haynsworth, E. V.; Markham, T., Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math., 26, 2, 254-259 (1974) · Zbl 0284.15004
[3] Fan, K.; Pall, G., Imbedding conditions for Hermitian and normal matrices, Canad. J. Math., 9, 298-304 (1957) · Zbl 0077.24504
[4] Haynsworth, E. V., Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl., 1, 73-81 (1968) · Zbl 0155.06304
[5] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge U.P: Cambridge U.P Cambridge · Zbl 0576.15001
[6] Lancaster, P.; Tismenetsky, M., The Theory of Matrices (1985), Academic: Academic New York · Zbl 0516.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.