×

zbMATH — the first resource for mathematics

Robust adaptive control of a class of nonlinear first order systems. (English) Zbl 0765.93039
Summary: We propose an adaptive controller for a class of first order nonlinear systems: \(\dot x=-\theta^{*T} f(x)-b^* u\), subject to bounded input and output disturbances. Unmodelled dynamics are also considered in the stability analysis. A dead zone in the parameters update law is used. The dead zone size does not depend neither on the disturbances upperbounds nor on the magnitude of the unmodelled dynamics. Moreover, the disturbances and parameters upperbounds are not assumed to be a priori known.

MSC:
93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Campion, G.; Bastin, G., Indirect adaptive state feedback control of linearly parametrized nonlinear systems, Int. J. of adaptive control and signal processing, 4, 345-358, (1990) · Zbl 0744.93058
[2] Coddington, E.A.; Levinson, N., ()
[3] Fillipov, A.F., Differential equations with discontinuous right hand sides, Ann. math. soc. transl., 42, 199-232, (1964)
[4] Ioannou, P.A.; Tsakalis, K.S., A robust direct adaptive controller, IEEE trans. on aut. control, AC-31, 1033-1043, (1986) · Zbl 0628.93040
[5] Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S., Adaptive output-feedback control of systems with output nonlinearities, (), 28 September-1 October · Zbl 0787.93056
[6] Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE trans. on aut. control, 36, 1241-1253, (1991) · Zbl 0768.93044
[7] Kang, H.; Dawson, D.M.; Lewis, F.L.; Vachtsevanos, G.J., A robust adaptive controller for rigid robots, ()
[8] Kreisselmeier, G.; Narendra, K.S., Stable model reference adaptive control in the presence of bounded disturbances, IEEE trans. on aut. control, AC-27, 1169-1175, (1982) · Zbl 0498.93036
[9] Liao, T.L.; Fu, L.C.; Hsu, C.F., Adaptive robust tracking of nonlinear systems and with an application to a robotic manipulator, Systems and control letters, 15, 339-348, (1990) · Zbl 0724.93048
[10] Lim, K.Y.; Eslami, M., Robust adaptive controller designs for robot manipulator systems, IEEE J. of robot. and automation, 3, (1987) · Zbl 0616.93043
[11] Middleton, R.; Goodwin, G.C.; Hill, D.; Mayne, D.Q., Design issues in adaptive control, IEEE trans. on aut. control, AC-33, 50-58, (1988) · Zbl 0637.93040
[12] Narendra, K.S.; Annaswamy, A.M., Robust adaptive control in the presence of bounded disturbances, IEEE trans. on aut. control, AC-31, 306-315, (1986) · Zbl 0588.93043
[13] Narenda, K.S.; Annaswamy, A.M., A new adaptive law for robust adaptation without persistent excitation, IEEE trans. on aut. control, AC-32, 134-145, (1987) · Zbl 0617.93035
[14] Orlicki, D.; Valavani, L.; Athans, M.; Stein, G., Adaptive control with variable dead-zone nonlinearities, (), 1893-1898
[15] Peterson, B.B.; Narendra, K.S., Bounded error adaptive control, IEEE trans. on aut. control, AC-27, (1982) · Zbl 0497.93026
[16] Reed, J.S.; Ioannou, P.A., Instability analysis and robust adaptive control of robotic manipulators, IEEE J. of robot. and automation, 15, (1989)
[17] Sastry, S.S., Model reference adaptive control—stability, parameter convergence and robustness, IMA J. of mathematical control and information, 1, 27-66, (1984) · Zbl 0622.93033
[18] Sastry, S.S.; Isidori, A., Adaptive control of linearizable systems, IEEE trans. on aut control, 34, 1123-1131, (1989) · Zbl 0693.93046
[19] Shoureshi, R.; Momot, M.E.; Roesler, M.D., Robust control for manipulators with uncertain dynamics, Automatica, 26, 353-359, (1990) · Zbl 0708.93059
[20] Vidyasagar, M., Electrical engineering series, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.