Nocedal, Jorge Theory of algorithms for unconstrained optimization. (English) Zbl 0766.65051 Acta Numerica 1992, 199-242 (1992). [For the entire collection see Zbl 0745.00007.]The author describes recent theoretical advances in practical methods for unconstrained optimization, e.g. the conjugate gradient method, the BFGS variable metric method, the partitioned quasi-Newton method for large scale optimization, the limited memory BFGS method for large scale optimization, Newton’s method, the Nelder-Meade method for problems with noisy functions. Open questions with respect to global convergence are formulated. Reviewer: J.Guddat (Berlin) Cited in 57 Documents MSC: 65K05 Numerical mathematical programming methods 90C30 Nonlinear programming 90C06 Large-scale problems in mathematical programming Keywords:unconstrained optimization; conjugate gradient method; BFGS variable metric method; quasi-Newton method; large scale optimization; Newton’s method; Nelder-Meade method; global convergence Citations:Zbl 0745.00007 Software:ve08; Algorithm 611; L-BFGS PDF BibTeX XML Cite \textit{J. Nocedal}, Acta Numerica 1992, 199--242 (1992; Zbl 0766.65051) OpenURL