zbMATH — the first resource for mathematics

A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters. (English) Zbl 0770.94005
Summary: We show for \(t>3\) the nonexistence of binary \([2^ t-2, 2^ t-2t-1, 5]\) codes.

94B05 Linear codes (general theory)
Full Text: DOI
[1] Brouwer, A.E. 1992.The linear programming bound for binary linear codes. PreprintIEEE Trans. Inf. Th., submitted. · Zbl 0776.94018
[2] Brouwer, A.E. and Verhoeff, T.An updated table of minimum-distance bounds for binary linear codes, preprint (March 1992). (IEEE Trans. Inf. Th., to appear) · Zbl 0776.94017
[3] Dodunekov, S.M. and Zinoviev, V.A. 1984.A note on Preparata codes. InProc. of the 6th Intern. Symp. Inform. Th., Tashkent 1984, 1984.
[4] Goethals, J.-M. and Snover, S.L., 1972.Nearly perfect binary codes.Discrete Math. 3:65-88. · Zbl 0248.94018
[5] Johnson, S.M. 1962.A new upper bound for error correcting codes, IRE Trans. Inform. Th. IT-8:203-207. · Zbl 0102.34602
[6] MacWilliams, F.J. and Sloane, N.J.A. 1977.The Theory of Error-Correcting Codes, North Holland Publ. Co., Amsterdam. · Zbl 0369.94008
[7] Preparata, F.P. 1968.A class of optimum nonlinear double-error correcting codes.Inf. & Control 13: 378-400. · Zbl 0167.47702
[8] Wax, N. 1959.On upper bounds for error detecting and error correcting codes of finite length.IEEE Trans. Info. Theory 5:168-174.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.