zbMATH — the first resource for mathematics

Typical sheaves of generalized CM-modules. (English) Zbl 0771.13005
Let \((R,m)\) be a noetherian local ring of dimension \(d>0\), and let \(M\) be a finitely generated generalized Cohen-Macaulay module over \(R\). Let \(x_ 1,\dots,x_ d\) be a standard system of parameters with respect to \(M\). Let \(I:=(x_ 1,\dots,x_ d)R\), \(T:=\text{Proj}(\bigoplus_{n\geq 0}I^ n/I^{n+1})\), and \(\mathbb{P}^{d-1}=\mathbb{P}^{d-1}_{R/I}\), so that \(T\) is a closed subscheme of \(\mathbb{P}^{d-1}\) (with closed immersion \(\lambda:T\to\mathbb{P}^{d-1})\). The author introduces a sheaf \({\mathcal E}\) (the exceptional sheaf of \(M\) with respect to \(I)\) on \(T\) and a sheaf \({\mathcal K}\) (the typical sheaf of \(M\) with respect to \(x_ 1,\dots,x_ d)\) on \(\mathbb{P}^{d-1}\), both of which are sheaves of Cohen-Macaulay modules. These are related by the following short exact sequence on \(\mathbb{P}^{d-1}:\) \(0\to{\mathcal K}\to(M/IM)\otimes{\mathcal O}_{\mathbb{P}^{d- 1}}\to\lambda_ *{\mathcal E}\to 0\). The author calculates the cohomological Hilbert functions of \({\mathcal E}\) and \({\mathcal K}\), obtaining in particular the degree of each. Furthermore \(M\) is Cohen-Macaulay if and only if \({\mathcal K}=0\). (For a coherent sheaf \({\mathcal F}\) on a projective space \(X\) the \(i\)-th cohomological Hilbert function is the function \(n\mapsto\text{length }H^ i(X,{\mathcal F}(n))\) \((i\geq 0,n\in\mathbb{Z})\).
13C14 Cohen-Macaulay modules
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text: DOI EuDML
[1] Brodmann, M., Kohomologische Eigenschaften von Aufblasungen an lokal vollständigen Durchschnitten, Habilitationsschrift, Münster 1980
[2] Brodmann, M., Local Cohomology of Certain Rees- and Form-Rings I, Journal of Algebra 81 (1983) 29–57 · Zbl 0507.14001
[3] Brodmann, M., Local Cohomology of Certain Rees- and Form-Rings II, Journal of Algebra 86, (1984) 457–493 · Zbl 0543.14003
[4] Brodmann, M., Two Types of Birational Models, Commentarii Mathematici Helvetici 58 (1983) 388–415 · Zbl 0526.14035
[5] Brodmann, M., Cohomology of Standard Blowing-up, Journal of Algebra 143 (1991) 401–435 · Zbl 0751.14010
[6] Brodmann, M., Vom Möbius-Band zur Hilbert-Funktion, Preprint, to appear in CERFIM reports
[7] Faltings, G., Über Macaulayfizierung, Mathematische Annalen 283 (1978) 175–192 · Zbl 0398.14002
[8] Goto, S., Blowing-up of Buchsbaum Rings, in ”Comm. Algebra”, pp. 140–162, LMS Lecture Note Series, Vol. 72. Cambridge Univ. Press, London/New York 1981
[9] Goto, S., A Note on Standard-Systems of Parameters for Generalized CM-Modules, in ”Proceedings, Symp. Kyoto University, Kyoto, 1982,” pp. 181–182
[10] Hartschorne R., ”Algebraic Geometry”, Springer, New York 1977
[11] Matsumura, H., ”Commutative Algebra”, 2nd. ed., Benjamin, London 1980 · Zbl 0441.13001
[12] Schenzel, P., Standard System of Parameters and their Blowing-up Rings, J. Reine Angew. Math. 344 (1983) 201–220 · Zbl 0497.13012
[13] Schenzel, P. CUONG, N. T., and TRUNG, N. V., Verallgemeninerte Cohen-Macaulay-Moduln, Math. Nachr. 35 (1978) 57–73 · Zbl 0398.13014
[14] Trung, N. V., Standard-Systems of Parameters of Generalized CM-Modules, Rep. Kariusawa Symp. Comm. Alg. (1982) 1–17
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.