×

zbMATH — the first resource for mathematics

Justification of multidimensional single phase semilinear geometric optics. (English) Zbl 0771.35010
Summary: For semilinear strictly hyperbolic systems \(Lu=f(x,u)\), we construct and justify high frequency nonlinear asymptotic expansions of the form \[ u^ \varepsilon(x)\sim\sum_{j\geq 0} \varepsilon^ j U_ j(x,\varphi(x)/\varepsilon), \qquad Lu^ \varepsilon-f(x,u^ \varepsilon)\sim 0. \] The study of the principal term of such expansions is called nonlinear geometric optics in the applied literature.
We show (i) formal expansions with periodic profiles \(U_ j\) can be computed to all orders, (ii) the equations for the profiles from (i) are solvable, and (iii) there are solutions of the exact equations which have the formal series as high frequency asymptotic expansion.

MSC:
35C20 Asymptotic expansions of solutions to PDEs
35L60 First-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yvonne Choquet-Bruhat, Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures Appl. (9) 48 (1969), 117 – 158 (French). · Zbl 0177.36404
[2] Ronald J. DiPerna and Andrew Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Phys. 98 (1985), no. 3, 313 – 347. · Zbl 0582.35081
[3] W. E, Propagation of oscillations in the solutions of \( 1\)-\( d\) compressible fluid equations (preprint).
[4] Olivier Guès, Ondes oscillantes simples quasilinéaires, Journées ”Équations aux Dérivées Partielles” (Saint Jean de Monts, 1989) École Polytech., Palaiseau, 1989, pp. Exp. No. IX, 8 (French). · Zbl 0697.35085
[5] John K. Hunter and Joseph B. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math. 36 (1983), no. 5, 547 – 569. · Zbl 0547.35070
[6] J. K. Hunter, A. Majda, and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables, Stud. Appl. Math. 75 (1986), no. 3, 187 – 226. · Zbl 0657.35084
[7] J.-L. Joly, G. Métivier, and J. Rauch, Resonant one-dimensional nonlinear geometric optics, J. Funct. Anal. 114 (1993), no. 1, 106 – 231. · Zbl 0851.35023
[8] J.-L. Joly and J. Rauch, Ondes oscillantes semi-linéaires en 1d, Journées ”Équations aux dérivées partielles” (Saint Jean de Monts, 1986) École Polytech., Palaiseau, 1986, pp. No. XI, 20 (French). · Zbl 0614.35002
[9] L. Cattabriga, F. Colombini, M. K. V. Murthy, and S. Spagnolo , Recent developments in hyperbolic equations, Pitman Research Notes in Mathematics Series, vol. 183, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. · Zbl 0713.00007
[10] J.-L. Joly and J. Rauch, High frequency semilinear oscillations, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986) Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 202 – 216. · Zbl 0703.35103
[11] Jean-Luc Joly and Jeffrey Rauch, Nonlinear resonance can create dense oscillations, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988 – 1989) IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 113 – 123. · Zbl 0794.35098
[12] Andrew Majda and Rodolfo Rosales, Resonantly interacting weakly nonlinear hyperbolic waves. I. A single space variable, Stud. Appl. Math. 71 (1984), no. 2, 149 – 179. · Zbl 0572.76066
[13] Andrew Majda, Rodolfo Rosales, and Maria Schonbek, A canonical system of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79 (1988), no. 3, 205 – 262. · Zbl 0669.76103
[14] Jeffrey B. Rauch and Frank J. Massey III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303 – 318. · Zbl 0282.35014
[15] Richard Melrose and Niles Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. (2) 121 (1985), no. 1, 187 – 213. · Zbl 0575.35063
[16] Guy Métivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J. 53 (1986), no. 4, 983 – 1011. · Zbl 0631.35056
[17] Jeffrey Rauch and Michael C. Reed, Discontinuous progressing waves for semilinear systems, Comm. Partial Differential Equations 10 (1985), no. 9, 1033 – 1075. · Zbl 0598.35069
[18] Jeffrey Rauch and Michael Reed, Striated solutions of semilinear, two-speed wave equations, Indiana Univ. Math. J. 34 (1985), no. 2, 337 – 353. · Zbl 0559.35053
[19] -, Bounded, stratified, and striated solutions of hyperbolic systems, Nonlinear Partial Differential Equations and Their Applications, Vol. IX , Research Notes in Math., vol. 181, Pitman, New York, 1989.
[20] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, N.J., 1981. · Zbl 0453.47026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.