Jiang, Chun Bo; Kawahara, Mutsuto A three-step finite element method for unsteady incompressible flows. (English) Zbl 0771.76038 Comput. Mech. 11, No. 5-6, 355-370 (1993). Summary: This paper describes a three-step finite element method and its applications to unsteady incompressible fluid flows. The stability analysis of the one-dimensional purely convection equation shows that this method has third-order accuracy and an extended numerical stability domain in comparison with the Lax-Wendroff finite element method. The method is cost effective for incompressible flows, because it permits less frequent updates of the pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the present three-step finite element method does not contain any new higher-order derivatives, and is suitable for solving nonlinear multi-dimensional problems and flows with complicated outlet boundary conditions. The three-step finite element method has been used to simulate unsteady incompressible flows, such as the vortex pairing in mixing layer. The properties of the flow fields are displayed by the marker and cell technique. The obtained numerical results are in good agreement with the literature. Cited in 8 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:stability analysis; third-order accuracy; nonlinear multi-dimensional problems; vortex pairing; marker and cell technique PDF BibTeX XML Cite \textit{C. B. Jiang} and \textit{M. Kawahara}, Comput. Mech. 11, No. 5--6, 355--370 (1993; Zbl 0771.76038) Full Text: DOI OpenURL References: [1] Bernal, L.; Brown, G. L.; Roshko, A. (1982): In: Van Dyke, M. (ed.): An Album of Fluid Motion. Parabolic Press. 102-103 [2] Brooks, A. N.; Hughes, T. J. R. (1982): Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng. 32, 199-259 · Zbl 0497.76041 [3] Chein, R.; Chung, J. N.; Troutt, T. R. (1989): Momentum transport in a turbulent mixing layer. Int. J. Numer. Meth. in Fluids. 9, 23-41 [4] Donea, J. (1984): A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Meth. Eng. 20, 101-119 · Zbl 0524.65071 [5] Donea, J.; Giuliani, S.; Laval, H.; Quartapelle, L. (1984): Time-accurate solution of advection-diffusion problems. Comp. Meth. Appl. Mech. Eng. 45, 123-146 · Zbl 0537.76061 [6] Donea, J.; Quartapelle, L.; Selmin, V. (1987): An analysis of time discretization in the finite element solution of hyperbolic problems. J. Comput. Phys. 70, 463-499 · Zbl 0621.65102 [7] Ghia, U.; Ghia, K. N.; Shin, C. T. (1982): High resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 43, 347-411 · Zbl 0511.76031 [8] Gresho, P. M.; Lee, R. L.; Sani, R. L. (1978): Advection-dominated flows, with emphasis on the consequences of mass lumping. In: Gallagher, R. H. et al. (ed.): Finite Elements in Fluids. John Wiley and Sons. 3, 335-350 [9] Gresho, P. M.; Chan, S. T.; Lee, R. L.; Upson, C. D. (1984): A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations, Part 1: Theory. Int. J. Numer. Meth. Fluids. 4, 557-598 · Zbl 0559.76030 [10] Gresho, P. M.; Sani, R. L. (1987): On pressure boundary conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids. 7, 1111-1145 · Zbl 0644.76025 [11] Hawken, D. M.; Tamaddon-Jahromi, H. R.; Townsend, P.; Webster, M. F. (1990): A Taylor-Galerkin-based algorithm for viscous incompressible flow. Int. J. Numer. Meth. Fluids. 10, 327-351 · Zbl 0686.76019 [12] Hawken, D. M.; Townsend, P.; Webster, M. F. (1990): A finite element simulation of vicous flow around a cylinder. Proc. of the Int. Conf. of Numerical Methods in Engineering: Theory and applications/Swansea/7-11 Jan. 955-962 [13] Hughes, T. J. R.; Brooks, A. N. (1979): A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes, T. J. R. (ed.): Finite Element Methods for Convection Dominated Flows. AMD-Vol. 34, ASME, New York · Zbl 0423.76067 [14] Hughes, T. J. R.; Tezduyar, T. E. (1984): Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comp. Meth. Appl. Eng. 45, 217-284 · Zbl 0542.76093 [15] Inoue, O. (1985): Vortex simulation of a turbulent mixing layer. AIAA Journal. 23, No. 3, 367-373 [16] Jiang, C. B.; Kawahara, M.; Kashiyama, K. (1992): A Taylor-Galerkin-based finite element method for turbulent flows. Fluid Dynamics Research. 9, 165-178 [17] Kawahara, M. (1976): Convergence of finite element Lax-Wendroff method for linear hyperbolic differential equation. Proc. of JSCE. 253, 95-107 [18] Laval, H.; Quartapelle, L. (1990): A fractional-step Taylor-Galerkin method for unsteady incompressible flows. Int. J. Numer. Meth. Fluids. 11, 501-513 · Zbl 0711.76019 [19] Lohner, R.; Morgan, K.; Zienkiewicz, O. C. (1984): The solution of non-linear hyperbolic equation systems by the finite element method. Int. J. Numer. Meth. Fluids. 4, 1043-1063 · Zbl 0551.76002 [20] Nallasamy, M.; Krishna Prasad, K. (1977): On cavity flow at high Reynolds Number. J. Fluid Mech. 79, 391-414 · Zbl 0344.76021 [21] Oster, D.; Wygnanski, J. (1982): The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91-130 [22] Papanastasiou, T. C.; Malamataria, N.; Ellwood, K. (1992): A new outlet boundary condition. Int. J. Numer. Meth. Fluids. 14, 587-608 · Zbl 0747.76039 [23] Schreiber, R.; Keller, B. (1983): Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310-333 · Zbl 0503.76040 [24] Selmin, V.; Donea, J.; Quartapelle, L. (1985): Finite element methods for nonlinear advection. Comp. Meth. Appl. Mech. Eng. 52, 817-845 · Zbl 0573.76005 [25] Shimura, M.; Zienkiewicz, O. C. (1991): Interaction analysis between structure and fluid flow using the direct Laplacian method. The 4th Int. Conf. on Computing in Civil and Building Engineering. July. 267-274 [26] Sivaloganathan, S.; Shaw, G. J. (1988): A multigrid method for recirculating flows. Int. J. Numer. Meth. Fluids. 8, 417-440 · Zbl 0672.76041 [27] Taneda, S.; Honji, H. (1971): Unsteady flow past a flat plane normal to the direction of motion. J. Physical Society of Japan. No. 1, 30, 262-272 [28] Tezduyar, T. E.; Hughes, T. J. R. (1982): Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Report prepared under NASA-Ames University Consortium Interchange NCA2-0R745104 [29] Tezduyar, T. E.; Hughes, T. J. R. (1983): Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. AIAA paper 83-0125. Proceedings of AIAA 21st Aerospace Sciences Meeting, Reno, Nevada [30] Tezduyar, T. E.; Ganjoo, D. K. (1985): Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems. Comp. Meth. Appl. Eng. 59, 49-71 · Zbl 0604.76077 [31] Webster, M. F.; Townsend, P. (1990): Development of a transient approach to simulate Newtonian and non-Newtonian flow. Proc. of the Int. Conf. of Numerical Methods in Engineering: Theory and applications/Swansea/7-11 Jan. 1003-1012 [32] Yoshida, Y.; Nomura, T. (1984): A transient solution method for the finite element incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids. 5, 873-890 · Zbl 0619.76027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.