×

Towards an automated environment in computational mechanics. (English) Zbl 0772.73082

Summary: Effective methods leading to an automated, computer-based solution of complex engineering design problems are studied in this paper. In particular, methods of automation of the finite element analyses are of primary interest here. This includes algorithmic approaches, based on error estimation, adaptivity and smart algorithms, as well as heuristic approaches based on methods of knowledge engineering. A computational environment, which interactively couples \(h-p\) adaptive finite element methods with object oriented programming and expert system tools, is presented. Several examples illustrate the merit and potential of the approaches studied here and confirm the feasibility of developing fully automated design environments.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
76M10 Finite element methods applied to problems in fluid mechanics
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

Software:

Eiffel
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Oden, J.T.; Demkowicz, L., Adaptive finite element methods for complex problems in solid and fluid mechanics, () · Zbl 0602.76097
[2] J.T. Oden and L. Demkowicz, Survey of adaptive computational methods, in: State-of-the-art surveys in Computational Mechanics (ASME, New York) to appear.
[3] A.K. Noor and I. Babuška, Quality assessment and control of finite element solutions, Finite Element Anal. Design, to appear.
[4] Oliveira Arantes, E.R., Optimization of finite element solutions, () · Zbl 0321.76011
[5] Demkowicz, L., Some remarks on moving finite element methods, Comput. methods appl. mech. engrg., 46, 339-349, (1984) · Zbl 0566.65083
[6] Herbst, B.M.; Mitchell, A.R.; Schoombie, S.W., A moving Petrov-Galerkin method for transport equations, Internat J. numer. methods engrg., 18, 1321-1336, (1982) · Zbl 0485.65093
[7] Herbst, B.M.; Mitchell, A.R.; Schoombie, S.W., Equidistribution principles in moving finite element methods, J. comput. appl. math., 9, 377-389, (1983) · Zbl 0532.65074
[8] Miller, K., Recent results on finite element methods with moving nodes, (1984), ARFEC Lisbon
[9] Muleller, A.C.; Carey, G.F., Continuously deforming finite element methods, Internat. J. numer. methods engrg., 21, 2099-2130, (1985)
[10] Wathen, A.J.; Baine, M.J.; Morton, K.W., Moving finite element methods for the solution of evolutionary equations in one and two space dimensions, (1984), MAFELAP
[11] Demkowicz, L.; Devloo, P.; Oden, J.T., On an h-type mesh refinement strategy based on minimization of interpolation error, Comput. methods appl. mech. engrg., 53, 67-89, (1985) · Zbl 0556.73081
[12] Oden, J.T.; Strouboulis, T.; Devloo, P., Adaptive finite element methods for compressible flow problems, () · Zbl 0593.76080
[13] Oden, J.T.; Demkowicz, L.; Strouboulis, T.; Devloo, P., Adaptive methods for problems in solid and fluid mechanics, () · Zbl 0593.76080
[14] A.W. Craig, J.A. Zhu and O.C. Zienkiewicz, A posteriori error estimation methods using hierarchical finite element bases, Inst. Numer. Methods Engrg., C/R/483/84. · Zbl 0589.73071
[15] Szabó, B.A., Mesh design for the p-version of the finite element method, Comput. methods appl. mech. engrg., 55, 181-197, (1986) · Zbl 0587.73106
[16] Szabó, B.A.; Basu, P.K.; Rossow, M.P., Adaptive finite element analysis based on p-convergence, (), 43-50
[17] Szabó, B.A.; Babuška, I., Stress approximations by the h- and p-versions of the finite element method, ()
[18] Zienkiewicz, O.C.; Craig, A.W., Adaptive mesh refinement and a posteriori error estimation for the p-version of the finite element method, () · Zbl 0564.65070
[19] Babuška, I.; Gui, W.; Szabó, B., Performance of the \(h, p\), and h-p versions of the finite element method, (1984), Preprint
[20] Demkowicz, L.; Oden, J.T.; Rachowicz, W.; Hardy, O., Toward a universal h-p adaptive finite element solver, () · Zbl 0723.73074
[21] Demkowicz, L.; Oden, J.T.; Rachowicz, W.; Hardy, O., Toward a universal h-p adaptive finite element strategy, part I: constrained approximation and data structure, Comput. methods appl. mech. engrg., 77, 79-112, (1989) · Zbl 0723.73074
[22] Oden, J.T.; Demkowicz, L.; Rachowicz, W.; Westermann, T.A., Toward a universal h-p adaptive finite element strategy, part II: A posteriori error estimation, Comput. methods appl. mech. engrg., 77, 113-180, (1989) · Zbl 0723.73075
[23] Rachowicz, W.; Oden, J.T.; Demkowicz, L., Toward a universal h-p adaptive finite element strategy, part III: design of h-p meshes, Comput. methods appl. mech. engrg., 77, 181-212, (1989) · Zbl 0723.73076
[24] Babuška, I.; Rank, E., An expert-system-like feedback approach in hp-version of the finite element method, () · Zbl 0644.73063
[25] Hassan, O.; Morgan, K.; Peraire, J., An adaptive implicit/explicit finite element scheme for compressible viscous high speed flows, () · Zbl 0687.76067
[26] Tworzydlo, W.W.; Oden, J.T.; Thornton, E.A., Adaptive implicit/explicit finite element method for compressible viscous flows, Comput. methods appl. mech. engrg., 95, 397-440, (1992) · Zbl 0748.76076
[27] Kumar, V.; Majaria, M.; Mukherjee, S., Numerical integration of some constitutive models of inelastic deformation, J. engrg. mater. tech., 102, 92-96, (1980)
[28] Bass, J.M.; Oden, J.T., Adaptive finite element methods for a class of evolution problems in viscoplasticity, Internat. J. engrg. sci., 25, 623-653, (1987) · Zbl 0612.73072
[29] Thornton, E.A.; Oden, J.T.; Tworzydlo, W.W.; Youn, S.K., Thermo-viscoplastic analysis of hypersonic structures subjected to severe aerodynamic heating, J. aircraft, 27, 826-836, (1990)
[30] Hughes, T.J.R.; Liu, W.K., Implicit/explicit finite elements in transient analysis: stability theory, J. appl. mech., 45, 371-374, (1978) · Zbl 0392.73076
[31] Hughes, T.J.R.; Liu, W.K., Implicit/explicit finite elements in transient analysis: implementation and numerical examples, J. appl. mech., 45, 375-378, (1978) · Zbl 0392.73077
[32] Tezduyar, T.E.; Liou, J., Adaptive implicit-explicit finite element algorithms for fluid mechanics problems, Comput. methods appl. mech. engrg., 78, 165-179, (1990) · Zbl 0711.76060
[33] Bennett, J.; Creary, L.; Englemore, R.; Melosh, R., A knowledge-based consultant for structural analysis, ()
[34] Fenves, S.J., A framework for a knowledge-based finite element assistant, () · Zbl 0918.68113
[35] Gregory, B.L.; Shephard, M.S., Design of a knowledge based system to convert airframe geometric models to structural models, ()
[36] Cagan, J.; Genberg, V., PLASHTRAN: an expert consultant on two-dimensional finite element modeling techniques, Engrg. with comput., 2, 199-208, (1987)
[37] Blacker, T.D.; Mitchiner, J.L.; Phillips, L.R.; Lin, Y.T., Knowledge system approach to automated two-dimensional quadrilateral mesh generation, Comput. engrg., 2, (1988)
[38] Chen, J.L.; Haleja, P., OPSYN: A CAD based expert system for optimum structural synthesis, Engrg. optim., 14, 267-286, (1989)
[39] An-Nashif, H.; Powell, G.H., A strategy for automated modeling of frame structures, Engrg. with comput., 5, 1-12, (1989)
[40] Sapidis, N.; Perruchio, R., Advanced techniques for automatic finite element meshing from solid models, (), 248-253 · Zbl 0667.73047
[41] Ohsuga, S., Towards intelligent CAD systems, Comput.-aided design, 21, 315-337, (1989)
[42] Shephard, M.S.; Baehmann, P.L.; Georges, M.K.; Korngold, E.V., Framework for the reliable generation and control of analysis idealizations, Comput. methods appl. mech. engrg., 82, 257-280, (1990)
[43] Shephard, M.S.; Korngold, E.V.; Collar, R.R.; Baehman, P.L., A modeling framework for controlling structural idealizations in engineering design, Comput. & structures, 37, 181-191, (1990)
[44] Shephard, M.S.; Yerry, M.A., Toward automated finite element modeling, Finite element anal. design, 2, 143-160, (1986)
[45] Shephard, M.S., Approaches to the automatic generation and control of finite element meshes, Appl. mech. rev., 41, 169-185, (1988)
[46] Shephard, M.S.; Korngold, E.V.; Wentorf, R., Design systems supporting engineering idealization, (), 279-300
[47] Wentorf, R.; Shephard, M.S., Automated analysis idealization control, () · Zbl 0957.74061
[48] Babuška, I.; Miller, A., The post-processing approach in the finite element method — part 1: calculation of displacements, stresses, and other higher derivative of displacements, Internat. J. numer. methods engrg., 20, 1085-1109, (1984) · Zbl 0535.73052
[49] Lerner, E.J., Computers that learn, Aerosp. amer., 32-40, (June 1988)
[50] Meyer, B., Object-oriented software construction, (1988), Prentice Hall Engelwood Cliffs, NJ
[51] Anderson, J.A., Data representation in neural networks, AI expert, 6, 30-37, (1990)
[52] Braun, R., Expert system tools for knowledge analysis, AI expert, 22-29, (October 1989)
[53] Harvey, J.J., Expert systems: an introduction, Internat. J. comput. technol., 1, 50-53, (1986)
[54] Kaminski, J.S.; Clitherow, P.A.; Stuk, G.J., Integrating expert systems with conventional applications, Comput. engrg., 1, 225-229, (1988)
[55] Tong, S.S., Coupling artificial intelligence and numerical computation for engineering design, AIAA paper 86-0242, (January 1986)
[56] Bayley, D.; Thompson, D., How to develop neural network applications, AI expert, 6, 38-47, (1990)
[57] Caudill, M., Using neural nets: diagnostic expert nets, AI expert, 7, 43-47, (1990)
[58] Caudill, M., Using neural nets, part 2: fuzzy decisions, AI expert, 59-64, (April 1990)
[59] Lawrence, J.J., Untangling neural nets, Dr. Dobb’s J., 163, 38-44, (1990)
[60] Ciarlet, P.G.; Destuynder, P., A justification of the two-dimensional linear plate model, J. Méchanique, 18, 315-344, (1979) · Zbl 0415.73072
[61] Ciarlet, P.G., Plates and junctions in elastic multi-structures, () · Zbl 0706.73046
[62] Trabucho, L.; Viaño, J.M., Derivation of generalized models for linear elastic beams by asymptotic methods, (), 302-315 · Zbl 0646.73024
[63] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO anal. numér. ser. rouge, 1, 129-151, (1974) · Zbl 0338.90047
[64] Bermudez-Viaño, J.M., Une justification des équations de la thermo-élasticité des poutres à section variable par des méthodes asymptotiques, RAIRO anal. numér., 18, 347-376, (1984) · Zbl 0572.73053
[65] Bathe, K.J.; Lee, N.-S.; Bucalem, M.L.; Bathe, K.J.; Lee, N.-S.; Bacalem, M.L., On the use of hierarchical models in engineering analysis, (), Comput. methods appl. mech. engrg., 82, 5-26, (1990), also in
[66] Farouki, R.T.; Hinds, J.K., An hierarchy of geometric forms, IEEE comput. graphics appl., 5, 51-78, (1985)
[67] Tworzydlo, W.W.; Huang, C.Y.; Oden, J.T., Adaptive implicit/explicit finite element methods for axisymmetric viscous turbulent flows with moving boundaries, Comput. methods appl. mech. engrg., 97, 245-288, (1992) · Zbl 0762.76060
[68] Gurtin, M.E., An introduction to continuum mechanics, (1981), Academic Press New York · Zbl 0559.73001
[69] Thornbrugh, A.L., Organizing multiple expert systems: A blackboard-based executive application, ()
[70] Andrews, A.E., Progress and challenges in the application of artificial intelligence to computational fluid dynamics, Aiaa j., 26, 40-46, (1988)
[71] Babuška, I.; Miller, A., The post-processing approach in the finite element method — part 2: the calculation of stress intensity factors, Internat. J. numer. methods engrg., 20, 1111-1129, (1984) · Zbl 0535.73053
[72] Babuška, I.; Miller, A., The post-processing approach in the finite element method — part 3: A posteriori error estimates and adaptive mesh selection, Internat. J. numer. methods engrg., 20, 2311-2324, (1984) · Zbl 0571.73074
[73] Bramble, J.H.; Schatz, A.H., Higher order accuracy by averaging in the finite element methods, Math. comput., 31, 94-111, (1977) · Zbl 0353.65064
[74] Guan, J.; Ohsuga, S., An intelligent man-machine system based on KAUS for designing feedback control systems, ()
[75] Lions, J.L., Perturbations singulières dans LES problèms aux limites et en contrôle optimal, () · Zbl 0268.49001
[76] Powell, G.H.; An-Nashif, H., Automated modeling for structural analysis, Engrg. with comput., 4, 173-183, (1988)
[77] Rehak, D.R., Artificial intelligence based techniques for finite element program development, (), 515-532
[78] Szabó, B.A., On errors of idealization in finite element analysis of structural connections, (), 15-28
[79] Tong, S.S., Design of aerodynamic bodies using artificial intelligence/expert system technique, AIAA paper 85-0112, (January 1985)
[80] Tworzydlo, W.W.; Oden, J.T.; Bass, J.M.; Combs, J.; Sheikh, S., Non-algorithmic issues in computational mechanics, Annual technical report, AFOSR contract F49620-89-C-0015, (April 1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.