×

Theory and computation of the steady state harmonic response of viscoelastic rubber parts. (English) Zbl 0775.73306


MSC:

74S05 Finite element methods applied to problems in solid mechanics
74Hxx Dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zdunek, A. B.; Bercovier, M., Numerical evaluation of finite element methods for rubber parts, 860817, (Proc. 6th Internat. Conf. on Vehicle Structural Mechanics. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics, Detroit, MI. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics, Detroit, MI, SAE/P-86/178, ISBN 0-89883-742-1 (1986), Soc. Auto. Engineers)
[2] Coleman, B. D.; Noll, W., Erratum, 36, 1103 (1964) · Zbl 0103.40804
[3] Lianis, G., Small deformations superposed on an initial large deformation in viscoelastic bodies, (Proc. 4th Internat. Congress on Rheology (1965), Interscience: Interscience New York), 109-119, Pt. 2
[4] Morman, K. N.; Sullivan, J. L.; Pett, R. A., Elastic and dynamic mechanical predictions for a natural rubber gum vulcanizate, ACS Meeting Paper (1979), Paper No. 12
[5] Herrmann, L. R., Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3, 1896-1900 (1965)
[6] Key, S. W., A variational principle for incompressible and nearly incompressible elasticity, Internat. J. Solids and Structures, 5, 951-964 (1969) · Zbl 0175.22101
[7] Oden, J. T.; Carey, G. F., (Finite Elements: Mathematical Aspects, Vol. IV (1984), Prentice Hall: Prentice Hall Englewood Cliffs, NJ) · Zbl 0558.73064
[8] Hughes, T. J.R., The Finite Element Methods (1987), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0535.76074
[9] Oden, J. T., Finite Elements on Nonlinear Continua (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0235.73038
[10] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 153-177 (1974) · Zbl 0284.73048
[11] Reissner, E., On a variational principle for elastic displacements and pressure, ASME Trans., 51, 444-445 (1984) · Zbl 0564.73019
[12] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Internat. J. Numer. Methods Engrg., 15, 1413-1418 (1980) · Zbl 0437.73053
[13] Bercovier, M.; Hasbani, Y.; Gilon, Y.; Bathe, K.-J., On a finite element procedure for nonlinear incompressible elasticity, (Proc. Internat. Symp. on Hybrid and Mixed Finite Element Method. Proc. Internat. Symp. on Hybrid and Mixed Finite Element Method, Atlanta (1981)) · Zbl 0472.73080
[14] B. Häggblad, Finite element analysis of rubber-like solids, Internat. J. Numer. Methods Engrg., in press.; B. Häggblad, Finite element analysis of rubber-like solids, Internat. J. Numer. Methods Engrg., in press.
[15] Sussman, T.; Bathe, K.-J., A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. & Structures, 26, 357-410 (1987) · Zbl 0609.73073
[16] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[17] Simo, J. C.; Lubliner, J., Formulation and computational aspects of a three-dimensional finite strain viscoelastic damage model, (Proc. 6th Internat. Conf. on Vehicle Structural Mechanics. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics, Detroit, MI (1986)) · Zbl 0588.73082
[18] Simo, J. C.; Hughes, T. J.R., On the variational foundations of the assumed strain methods, J. Appl. Mech., 53, 51-54 (1986) · Zbl 0592.73019
[19] Morman, K. N.; Nagtegaal, J. C., Finite element analysis of sinusoidal small-amplitude vibrations in deformed viscoelastic solids. Part I. Theoretical development, Internat. J. Numer. Methods Engrg., 19, 1079-1103 (1983) · Zbl 0509.73088
[20] Rivlin, R. S., Rheol. Acta, 16, 101-112 (1979) · Zbl 0376.73041
[21] Flory, R. J., Thermodynamic relations for highly elastic materials, Trans. Faraday Soc., 57, 829-838 (1961)
[22] Penn, R. W., Volume changes accompanying the extension of rubber, Trans. Soc. Rheol., 14, 509-517 (1970)
[23] Lockett, F. J., Nonlinear Viscoelastic Solids (1972), Academic Press: Academic Press London · Zbl 0333.73034
[24] K. Dovstam, Personal communication.; K. Dovstam, Personal communication.
[25] James, A. G.; Green, A. E.; Simpson, G. M., Strain energy functions of rubber. Part I. Characterization of gum vulcanizates, J. Appl. Polym. Sci., 19, 2033-2038 (1975)
[26] James, A. G.; Green, A. E., Strain energy functions of rubber. Part II. Characterization of filled vulcanizates, J. Appl. Polym. Sci., 19, 2319-2330 (1975)
[27] Engelman, M. S.; Sani, R. L.; Gresho, P. M.; Bercovier, M., Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements, Internat. J. Numer. Methods Fluids, 2, 25-42 (1982) · Zbl 0483.76013
[28] Hill, R.; Storákers, B.; Zdunek, A., A theoretical study of the Brinell hardness test, (Proc. Roy. Soc. London, 423 (1989)), 301-330, Ser. A · Zbl 0729.73065
[29] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (Flügge, S., Encyclopedia of Physics, Vol. III (1965), Springer: Springer Berlin), pt. 3 · Zbl 0779.73004
[30] Chadwick, P.; Haddon, E. W., Inflation-extension of a tube of incompressible isotropic elastic material, J. Inst. Math. Appl., 10, 258-278 (1972) · Zbl 0247.73091
[31] Jankovich, E.; Leblanc, F.; Durand, M.; Bercovier, M., A finite element method for the analysis of rubber parts, experimental and analytical assessment, Comput. & Structures, 5-6, 385-391 (1981) · Zbl 0467.73100
[32] A.B. Zdunek, On the determination of the material response functions for prestrained rubbers, Rheol. Acta, in press.; A.B. Zdunek, On the determination of the material response functions for prestrained rubbers, Rheol. Acta, in press.
[33] Kao, B. G.; Razgunas, L., On the determination of strain energy functions of rubbers, 860816, (Proc. 6th Internat. Conf. on Vehicle Structural Mechanics. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics, Detroit, MI. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics. Proc. 6th Internat. Conf. on Vehicle Structural Mechanics, Detroit, MI, SAE/P-86/178, ISBN 0-89883-742-1 (1986), Soc. Auto. Engineers)
[34] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0545.73031
[35] Astarita, G.; Marrucci, G., Principles of Non-Newtonian Fluid Mechanics (1974), McGraw-Hill: McGraw-Hill London · Zbl 0316.73001
[36] Silling, S. A., Incompressibility in dynamic relaxation, J. Appl. Mech., 54, 539-544 (1987) · Zbl 0618.73098
[37] Morman, K. N., An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of generalized strain measure, Rheol. Acta, 27, 3-14 (1988) · Zbl 0634.73029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.