zbMATH — the first resource for mathematics

Sobolev inequalities involving divergence free maps. (English) Zbl 0778.42011
Le but de ce papier est de donner une démonstration élémentaire de l’inégalité ci-dessous. On considère \(f,h \in H^ 1(\mathbb{R}^ n)\) et \(g \in L^ 2(\mathbb{R}^ n;\mathbb{R}^ n)\) qui vérifie \(\nabla \cdot g=0\). On suppose aussi que \[ A^ 2:=\sup_{z,r}r^{2-n} \int_{B(z,r)}| \nabla h |^ 2dx<\infty, \] où \(B(z,r)\) est la boule de \(\mathbb{R}^ n\), centrée en \(z\), de rayon \(r\). On prouve alors qu’il existe une constante \(c=c(n)\), indépendante de \(f,g\) et \(h\), telle que \[ \left| \int_{\mathbb{R}^ n}fg \cdot \nabla h dx \right| \leq cA \| \nabla f \|_{L^ 2(\mathbb{R}^ n)}\| g \|_{L^ 2(\mathbb{R}^ n)}. \] On obtient aussi une version “avec poids” de cette inégalité.

42B25 Maximal functions, Littlewood-Paley theory
26D10 Inequalities involving derivatives and differential and integral operators
42B30 \(H^p\)-spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] Chanillo S., Amer. J. Math. 107 pp 1191– (1985) · Zbl 0575.42026 · doi:10.2307/2374351
[2] Chanillo S., Comm. P.D.E. 10 pp 1077– (1985) · Zbl 0578.46024 · doi:10.1080/03605308508820401
[3] Garcia-Cuerva J., Weighted norm inequalities and related topics (1985) · Zbl 0578.46046
[4] Fefferman C., Studia Math 51 pp 241– (1974)
[5] Coifman R., C.R. Acad. Sci. 309 pp 945– (1989)
[6] Evans L.C., Partial regularity for stationary harmonic maps into spheres 309 (1990)
[7] Gundy R., Lusin area integral, and Walsh-Paley series, Studia Math 49 pp 187– (1974) · Zbl 0271.28002
[8] Hélein F., C.R. Acad. Sci. Paris 311 pp 519– (1990)
[9] Muckenhoupt B., Seminar on Nonlinear P.D.E. 165 pp 207– (1972)
[10] Schoen R., Seminar on Nonlinear P.D.E. (1984)
[11] Stein E., Singular integrals and Diferentiability properties of functions
[12] E. Sawyer and R. Wheeden, Carleson conditions for the Poisson integral, preprint January 1991. · Zbl 0748.42009
[13] Wheeden R., Weighted Hardy Spaces 1381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.