×

zbMATH — the first resource for mathematics

A study of \(H_{\infty{}}\) norm and variance-constrained design using dynamic output feedback for linear discrete systems. (English) Zbl 0782.93033
Author’s abstract: The problem of \(H_ \infty\) norm and variance- constrained design is to find controllers such that the closed-loop transfer function has an \(H_ \infty\) norm less than a specified scalar such that the root-mean-squared values of individual states are less than specified constants. In this paper, dynamic output feedback controllers are used to developed a technique for achieving both \(H_ \infty\) norm constraint and variance constraints for linear stochastic discrete systems.
Reviewer: G.Conte (Ancona)

MSC:
93B36 \(H^\infty\)-control
93E99 Stochastic systems and control
93B51 Design techniques (robust design, computer-aided design, etc.)
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207178708547393 · Zbl 0634.93024 · doi:10.1080/00207178708547393
[2] DOI: 10.1109/9.16419 · Zbl 0674.93069 · doi:10.1109/9.16419
[3] CHUNG H. Y., Control–Theory and Advanced Technology 6 pp 655– (1990)
[4] CHUNG H. Y., Proceedings of the 14th National Symposium on Automatic Control (1990)
[5] CHUNG H. Y., JSME International Journal Series III 33 pp 559– (1990)
[6] DOI: 10.1109/TAC.1987.1104443 · Zbl 0613.93066 · doi:10.1109/TAC.1987.1104443
[7] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[8] DOI: 10.1137/0325046 · Zbl 0628.93011 · doi:10.1137/0325046
[9] DOI: 10.1016/0167-6911(90)90013-K · Zbl 0699.93025 · doi:10.1016/0167-6911(90)90013-K
[10] DOI: 10.1016/0167-6911(91)90011-3 · Zbl 0728.93033 · doi:10.1016/0167-6911(91)90011-3
[11] HADDAD W. M., IEEE Conference on Decision and Control (1989)
[12] DOI: 10.1080/00207178708933880 · Zbl 0626.93080 · doi:10.1080/00207178708933880
[13] DOI: 10.1109/9.58499 · Zbl 0719.93075 · doi:10.1109/9.58499
[14] SKELTON R. E., International Journal of Control 49 pp 1773– (1989)
[15] DOI: 10.1109/TAC.1981.1102603 · Zbl 0474.93025 · doi:10.1109/TAC.1981.1102603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.