zbMATH — the first resource for mathematics

Sectional genus and cohomology of projective varieties. (English) Zbl 0783.14010
Generalizing his previous results for surfaces [Arch. Math. 50, No. 1, 68-72 (1988; Zbl 0705.14019)], the author obtains upper bounds for the cohomology \(H^ i( \mathbb{P}^ d,{\mathcal F}(n)\) \((n \geq 0,i>0)\) of a sheaf on \(\mathbb{P}^ d\). The bounds are too complicated to be stated here. They depend on the cohomology of the restrictions of \({\mathcal F}\) to sufficiently general projective subspaces and the linear spans of the nonmaximal associated primes of \({\mathcal F}\). The bounds for left trivial sheaves, i.e. sheaves with vanishing cohomology for \(n<0\) and \(i<\dim \bigl( \sup({\mathcal F}) \bigr)\), are simpler and can be applied to smooth varieties in characteristic zero.

14F99 (Co)homology theory in algebraic geometry
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text: DOI EuDML
[1] Brodmann, M.: Bounds on the cohomological Hilbert Functions of a Projective Variety. J. Algebra109, 352–380 (1987) · Zbl 0578.14015 · doi:10.1016/0021-8693(87)90144-X
[2] Brodmann, M.: Bounds on the Serre Cohomology of a Projective Variety. Ĉas. Peŝtovóní Mat.112, 238–244 (1987) · Zbl 0646.14016
[3] Brodmann, M.: A Bound for the first Cohomology of a Projective Surface. Arch. Math.50, 68–72 (1988) · Zbl 0705.14019 · doi:10.1007/BF01313497
[4] Brodmann, M.: A priori Bounds of Castelnuovo Type for Cohomological Hilbert Functions. Comment. Math. Helv.65, 478–518 (1990) · Zbl 0728.14014 · doi:10.1007/BF02566622
[5] Hartshorne, P.: Algebraic Geometry. (Grad. Texts Math., vol. 52) Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001
[6] Jouanolou, J.P.: Théorèmes de Bertini et Applications. (Prog. Math., vol. 42) Boston Basel Stuttgart: Birkhäuser 1983 · Zbl 0519.14002
[7] Kodaira, K.: On a Differential Geometric Method in the Theory of Analytic Stacks. Proc. Natl. Acad. Sci. USA39, 1268–1273 (1953) · Zbl 0053.11701 · doi:10.1073/pnas.39.12.1268
[8] Matsumura, H.: Commutative Algebra. New York: Benjamin 1970 · Zbl 0211.06501
[9] Mumford, D.: Pathologies III. Am. J. Math.89, 94–104 (1967) · Zbl 0146.42403 · doi:10.2307/2373099
[10] Ramanujam, C.: Remarks on the Kodaira Vanishing Theorem. J. Indian Math. Soc.36, 41–51 (1972) · Zbl 0276.32018
[11] Serre, J.P.: Faisceaux Algébriques Cohérents. Ann. Math.61, 192–278 (1955) · Zbl 0067.16201 · doi:10.2307/1969915
[12] Serre, J.P.: Géométrique Algébrique et Géométrie Analytique. Ann. Inst. Fourier6, 1–42 (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.